Richard d'Arcy

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We have employed microfluidics (cross-shaped chip) for the preparation of drug-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles. The polymer precipitates from an acetone solution upon its controlled laminar mixing (flow focusing) with an aqueous solution of a surfactant, allowing for an operator-independent, up-scalable and reproducible(More)
In the last 20years, the availability of precision chemical tools (e.g. controlled/living polymerizations, 'click' reactions) has determined a step change in the complexity of both the macromolecular architecture and the chemical functionality of biodegradable polyesters. A major part in this evolution has been played by the possibilities that controlled(More)
This study focuses on the comparative evaluation of star (branched) and linear poly(l,d-lactic acid) (PDLLA) as degradable materials employed in controlled release. The polymers were prepared via ring-opening polymerization initiated by decanol (linear), pentaerythritol (4-armed star) and dipentaerythritol (6-armed star), and processed both in the form of(More)
Families of amphiphilic oxidation-responsive polymers (poly(ethylene glycol)-polysulfides) with different architectures (linear, 4, 6, and 8-armed stars and 10, 15, and 20-armed combs) and compositions (variable ethylene sulfide/propylene sulfide ratio) are prepared. In water, all the polymers assemble in spherical micelles, with critical micellar(More)
The Mitsunobu reaction can be efficiently used for the transformation of poly(ethylene glycol) (PEG) terminal OH group(s) into a variety of functions. In comparison to more classical approaches of PEG functionalization, the main advantage of the Mitsunobu reaction attains to the fact that in one step, with no detrimental effect on PEG integrity (e.g., chain(More)
  • 1