Learn More
The structure of auxin-binding protein 1 (ABP1) from maize has been determined at 1.9 A resolution, revealing its auxin-binding site. The structure confirms that ABP1 belongs to the ancient and functionally diverse germin/seed storage 7S protein superfamily. The binding pocket of ABP1 is predominantly hydrophobic with a metal ion deep inside the pocket(More)
Shigella effectors injected into the host cell via the type III secretion system are involved in various aspects of infection. Here, we show that one of the effectors, IpaH9.8, plays a role in modulating inflammatory responses to Shigella infection. In murine lung infection model, DeltaipaH9.8 mutant caused more severe inflammatory responses with increased(More)
Three-dimensional structures have been determined of a large number of proteins characterized by a repetitive fold where each of the repeats (coils) supplies a strand to one or more parallel beta-sheets. Some of these proteins form superfamilies of proteins, which have probably arisen by divergent evolution from a common ancestor. The classical example is(More)
BACKGROUND Cysteine proteases are involved in a variety of cellular processes including cartilage degradation in arthritis, the progression of Alzheimer's disease and cancer invasion: these enzymes are therefore of immense biological importance. Caricain is the most basic of the cysteine proteases found in the latex of Carica papaya. It is a member of the(More)
Germin is a hydrogen peroxide generating oxalate oxidase with extreme thermal stability; it is involved in the defense against biotic and abiotic stress in plants. The structure, determined at 1.6 A resolution, comprises beta-jellyroll monomers locked into a homohexamer (a trimer of dimers), with extensive surface burial accounting for its remarkable(More)
Oxalate oxidase (EC catalyzes the conversion of oxalate and dioxygen to hydrogen peroxide and carbon dioxide. In this study, glycolate was used as a structural analogue of oxalate to investigate substrate binding in the crystalline enzyme. The observed monodentate binding of glycolate to the active site manganese ion of oxalate oxidase is(More)
The crystal structure of Pseudomonas cellulosa mannanase 26A has been solved by multiple isomorphous replacement and refined at 1.85 A resolution to an R-factor of 0.182 (R-free = 0.211). The enzyme comprises (beta/alpha)(8)-barrel architecture with two catalytic glutamates at the ends of beta-strands 4 and 7 in precisely the same location as the(More)
The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray(More)
We have solved the structure of the Bacillus subtilis pectate lyase (BsPel) in complex with calcium. The structure consists of a parallel beta-helix domain and a loop region. The alpha L-bounded beta-strand seen in BsPel is a new element of protein structure and its frequent occurrence suggests it is an important characteristic of the parallel beta-helix. A(More)
Pectate lyases harness anti beta-elimination chemistry to cleave the alpha-1,4 linkage in the homogalacturonan region of plant cell wall pectin. We have studied the binding of five pectic oligosaccharides to Bacillus subtilis pectate lyase in crystals of the inactive enzyme in which the catalytic base is substituted with alanine (R279A). We discover that(More)