Richard W. Birkinshaw

Learn More
T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small(More)
The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR(More)
Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and(More)
A characteristic of mucosal-associated invariant T (MAIT) cells is the expression of TRAV1-2(+) T cell receptors (TCRs) that are activated by riboflavin metabolite-based antigens (Ag) presented by the MHC-I related molecule, MR1. Whether the MR1-restricted T cell repertoire and associated Ag responsiveness extends beyond these cells remains unclear. Here,(More)
A central paradigm in αβ T cell-mediated immunity is the simultaneous co-recognition of antigens and antigen-presenting molecules by the αβ T cell antigen receptor (TCR). CD1a presents a broad repertoire of lipid-based antigens. We found that a prototypical autoreactive TCR bound CD1a when it was presenting a series of permissive endogenous ligands, while(More)
αβT-cell mediated immunity is traditionally characterised by recognition of peptides or lipids presented by the major histocompatibility complex (MHC) or the CD1 family respectively. Recently the antigenic repertoire of αβT-cells has been expanded with the observation that mucosal-associated invariant T-cells (MAIT cells), an abundant population of(More)
Human CD1a mediates foreign Ag recognition by a T cell clone, but the nature of possible TCR interactions with CD1a/lipid are unknown. After incubating CD1a with a mycobacterial lipopeptide Ag, dideoxymycobactin (DDM), we identified and measured binding to a recombinant TCR (TRAV3/ TRBV3-1, KD of ≈100 μM). Detection of ternary CD1a/lipid/TCR interactions(More)
T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non-ligand-bound CD1a for testing lipids from tissues.(More)
Mucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. However,(More)
The major histocompatibility complex class I-related molecule MR1 can bind a novel class of antigens, namely a family of related small organic vitamin B metabolites. When bound to MR1 these metabolites are presented to a population of innate-like T cells, mucosal-associated invariant T (MAIT) cells that express a semi-invariant T cell receptor (TCR).(More)