Learn More
A good model system to examine aspects of positive and negative transcriptional regulation is the muscle-specific regulatory factor, MyoD, which is a basic helix-loop-helix (bHLH) transcription factor. Although MyoD has the ability to induce skeletal muscle terminal differentiation in a variety of non-muscle cell types, MyoD activity itself is highly(More)
The basic helix-loop-helix muscle regulatory factor (MRF) gene family encodes four distinct muscle-specific transcription factors known as MyoD, myogenin, Myf-5, and MRF4. These proteins represent key regulatory factors that control many aspects of skeletal myogenesis. Although the MRFs often exhibit overlapping functional activities, their distinct(More)
Basic helix-loop-helix (bHLH) proteins often belong to a family of transcription factors that bind to the DNA target sequence -CANNTG- (E-box) that is present in the promoter or enhancer regions of numerous developmentally regulated genes. In this study, we report the isolation and initial characterization of a novel bHLH factor, termed Mist1, that was(More)
Basic helix-loop-helix (bHLH) transcription factors play diverse roles in controlling many developmental events. Although a great deal is understood about how bHLH factors activate gene transcription via E-box DNA consensus sequences, studies of bHLH factor function in higher eukaryotes often have been hindered by the presence of multiple family members. As(More)
MRF4 is a member of the basic helix-loop-helix muscle regulatory factor family that also includes MyoD, myogenin, and Myf-5. Overexpression of MRF4 or the other muscle regulatory factors in fibroblasts converts the cells to differentiated muscle fibers and transcriptionally activates expression of endogenous and cotransfected muscle genes. Although these(More)
Some models of in vitro chromatin assembly suggest a biphasic molecular mechanism. The first phase, nucleosome formation, is comprised of the formation of histone-DNA complexes which mature into a canonical nucleosome structure. The second phase represents the process by which these nucleosomes become properly spaced with a regular periodicity on the DNA.(More)
The HIV-1 TAT peptide has been used extensively for directing the intracellular delivery of an assortment of cargo, including DNA, liposomes and macromolecules. For protein delivery, a variety of TAT-fusion proteins have been described which link the TAT coding sequence to the protein coding sequence of interest. Streptavidin represents a potentially useful(More)
  • 1