Learn More
The small visual area known as MT or V5 has played a major role in our understanding of the primate cerebral cortex. This area has been historically important in the concept of cortical processing streams and the idea that different visual areas constitute highly specialized representations of visual information. MT has also proven to be a fertile culture(More)
The integration of visual information is a critical task that is performed by neurons in the extrastriate cortex of the primate brain. For motion signals, integration is complicated by the geometry of the visual world, which renders some velocity measurements ambiguous and others incorrect. The ambiguity arises because neurons in the early stages of visual(More)
Visual neurons are often characterized in terms of their tuning for various stimulus properties, such as shape, color, and velocity. Generally, these tuning curves are further modulated by the overall intensity of the stimulus, such that increasing the contrast increases the firing rate, up to some maximum. In this paper, we describe the tuning of neurons(More)
Processing of visual information is both parallel and hierarchical, with each visual area richly interconnected with other visual areas. An example of the parallel architecture of the primate visual system is the existence of two principal pathways providing input to the middle temporal visual area (MT): namely, a direct projection from striate cortex (V1),(More)
The smooth pursuit system must integrate many local motion measurements into a coherent estimate of target velocity. Several laboratories have studied this integration process using eye movements elicited by targets, such as tilted bars, containing conflicts between local motion signals measured along contours [one dimensional (1D)] and those measured at(More)
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry(More)
The primate visual system is arranged hierarchically, starting from the retina and continuing through a series of extrastriate visual areas. Selectivity for motion is first found in individual neurons in the primate visual cortex (V1), in which many simple cells respond selectively to the direction and speed of moving stimuli. Beyond simple cells, most(More)
Feedback connections are prevalent throughout the cerebral cortex, yet their function remains poorly understood. Previous studies in anesthetized monkeys found that inactivating feedback from extrastriate visual cortex produced effects in striate cortex that were relatively weak, generally suppressive, largest for visual stimuli confined to the receptive(More)
Neurons at progressively higher levels of the visual system have progressively larger, more complicated receptive fields, presumably constructed from simpler antecedent receptive fields. To study this hierarchical organization, we used sparse white noise to map receptive-field substructure (second order Wiener-like kernels) in an extrastriate motion(More)
The analysis of object motion and stereoscopic depth are important tasks that are begun at early stages of the primate visual system. Using sparse white noise, we mapped the receptive field substructure of motion and disparity interactions in neurons in V1 and MT of alert monkeys. Interactions in both regions revealed subunits similar in structure to V1(More)