Richard Socher

Learn More
The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a(More)
Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global(More)
Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank.(More)
A Long Short-Term Memory (LSTM) network is a type of recurrent neural network architecture which has recently obtained strong results on a variety of sequence modeling tasks. The only underlying LSTM structure that has been explored so far is a linear chain. However, natural language exhibits syntactic properties that would naturally combine words to(More)
Unsupervised word representations are very useful in NLP tasks both as inputs to learning algorithms and as extra word features in NLP systems. However, most of these models are built with only local context and one representation per word. This is problematic because words are often polysemous and global context can also provide useful information for(More)
We introduce a novel machine learning framework based on recursive autoencoders for sentence-level prediction of sentiment label distributions. Our method learns vector space representations for multi-word phrases. In sentiment prediction tasks these representations outperform other state-of-the-art approaches on commonly used datasets, such as movie(More)
Single-word vector space models have been very successful at learning lexical information. However, they cannot capture the compositional meaning of longer phrases, preventing them from a deeper understanding of language. We introduce a recursive neural network (RNN) model that learns compositional vector representations for phrases and sentences of(More)
Knowledge bases are an important resource for question answering and other tasks but often suffer from incompleteness and lack of ability to reason over their discrete entities and relationships. In this paper we introduce an expressive neural tensor network suitable for reasoning over relationships between two entities. Previous work represented entities(More)
Paraphrase detection is the task of examining two sentences and determining whether they have the same meaning. In order to obtain high accuracy on this task, thorough syntactic and semantic analysis of the two statements is needed. We introduce a method for paraphrase detection based on recursive autoencoders (RAE). Our unsupervised RAEs are based on a(More)
Natural language parsing has typically been done with small sets of discrete categories such as NP and VP, but this representation does not capture the full syntactic nor semantic richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases or splitting categories only partly address the problem at the cost of huge feature spaces(More)