Richard S. Sutton

Learn More
The reinforcement learning (RL) problem is the challenge of artificial intelligence in a microcosm; how can we build an agent that can plan, learn, perceive, and act in a complex world? There’s a great new book on the market that lays out the conceptual and algorithmic foundations of this exciting area. RL pioneers Rich Sutton and Andy Barto have published(More)
This article introduces a class of incremental learning procedures specialized for prediction-that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between predicted and actual outcomes, the new methods assign credit by(More)
Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We extend the usual notion of action in this framework to include(More)
Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented by its own function approximator, independent of the value(More)
This paper extends previous work with Dyna a class of architectures for intelligent systems based on approximating dynamic program ming methods Dyna architectures integrate trial and error reinforcement learning and execution time planning into a single process operating alternately on the world and on a learned model of the world In this paper I present(More)
On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have been mixed. In particular, Boyan and Moore reported at(More)
RoboCup simulated soccer presents many challenges to reinforcement learning methods, including a large state space, hidden and uncertain state, multiple independent agents learning simultaneously, and long and variable delays in the effects of actions. We describe our application of episodic SMDP Sarsa(λ) with linear tile-coding function approximation and(More)
The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds of trace assign credit to prior events(More)