Richard S. Paules

Learn More
Eukaryotic cells respond to unfolded proteins in their endoplasmic reticulum (ER stress), amino acid starvation, or oxidants by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). This adaptation inhibits general protein synthesis while promoting translation and expression of the transcription factor ATF4. Atf4(-/-) cells are(More)
The determination of a list of differentially expressed genes is a basic objective in many cDNA microarray experiments. We present a statistical approach that allows direct control over the percentage of false positives in such a list and, under certain reasonable assumptions, improves on existing methods with respect to the percentage of false negatives.(More)
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung(More)
Chromatid catenation is actively monitored in human cells, with progression from G(2) to mitosis being inhibited when chromatids are insufficiently decatenated. Mitotic delay was quantified in normal and checkpoint-deficient human cells during treatment with ICRF-193, a topoisomerase II catalytic inhibitor that prevents chromatid decatenation without(More)
The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate(More)
The application of gene expression profiling technology to examine multiple genes and signaling pathways simultaneously promises a significant advance in understanding toxic mechanisms to ultimately aid in protection of public health. Public and private efforts in the new field of toxicogenomics are focused on populating databases with gene expression(More)
To facilitate collaborative research efforts between multi-investigator teams using DNA microarrays, we identified sources of error and data variability between laboratories and across microarray platforms, and methods to accommodate this variability. RNA expression data were generated in seven laboratories, which compared two standard RNA samples using 12(More)
A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for(More)
Inhibition of replicon initiation is a stereotypic DNA damage response mediated through S checkpoint mechanisms not yet fully understood. Studies were undertaken to elucidate the function of checkpoint proteins in the inhibition of replicon initiation following irradiation with 254 nm UV light (UVC) of diploid human fibroblasts immortalized by the ectopic(More)
DNA double-strand breaks are generated by genotoxic agents and by cellular endonucleases as intermediates of several important physiological processes. The cellular response to genotoxic DNA breaks includes the activation of transcriptional programs known primarily to regulate cell-cycle checkpoints and cell survival. DNA double-strand breaks are generated(More)