Richard S. B. Milne

Learn More
MicroRNAs are small, non-coding RNAs that negatively regulate gene expression. It has been proposed that microRNAs could function in the regulation of innate immunity, but this has not been demonstrated for viral infection. Here we test this hypothesis using the human pathogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and one of its putative(More)
The human herpesvirus 6 (HHV-6) U51 gene defines a new family of betaherpesvirus-specific genes encoding multiple transmembrane glycoproteins with similarity to G protein-coupled receptors, in particular, human chemokine receptors. These are distinct from the HHV-6 U12 and HCMV US28 family. In vitro transcription and translation as well as transient(More)
Human herpesvirus entry mediator C (HveC) is an alphaherpesvirus receptor which binds to virion glycoprotein D (gD). We identified porcine HveC and studied its interaction with pseudorabies virus (PrV) and herpes simplex virus type 1 (HSV-1) gD. Porcine and human HveC have 96% amino acid identity and HveC from African green monkey, mouse, hamster, and cow(More)
Using a liposome-binding assay, we investigated the requirements for activation of herpes simplex virus (HSV) into a state capable of membrane interaction. Virions were mixed with liposomes along with the ectodomain of one of three gD receptors (HVEMt, nectin-1t, or nectin-2t) and incubated under different pH and temperature conditions. Virions failed to(More)
In alphaherpesviruses, glycoprotein B (gB), gD, gH, and gL are essential for virus entry. A replication-competent gL-null pseudorabies virus (PrV) (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999) was shown to express a gDgH hybrid protein that could replace gD, gH, and gL in cell-cell fusion and null virus complementation assays. To study(More)
A cell fusion assay using fusion-from-without (FFWO) recombinant adenoviruses (RAds) and specific antibody showed a role in fusion modulation for glycoprotein gO, the recently identified third component of the gH/gL gCIII complex of human cytomegalovirus (HCMV). As in HCMV, RAd gO expressed multiple glycosylated species with a mature product of 125 kDa.(More)
Two herpes simplex virus type 1 (HSV-1) entry pathways have been described: direct fusion between the virion envelope and the plasma membrane, as seen on Vero cells, and low-pH-dependent endocytosis, as seen on CHO nectin-1 and HeLa cells. In this paper, we studied HSV entry into C10 murine melanoma cells and identified a third entry pathway for this virus.(More)
Tetherin is a broadly active antiviral effector that works by tethering nascent enveloped virions to a host cell membrane, thus preventing their release. In this study, we demonstrate that herpes simplex virus 1 (HSV-1) is targeted by tetherin. We identify the viral envelope glycoprotein M (gM) as having moderate anti-tetherin activity. We show that gM but(More)
During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell(More)
We have studied the receptor-specific function of four linker-insertion mutants of herpes simplex virus type 1 glycoprotein D (gD) representing each of the functional regions of gD. We used biosensor analysis to measure binding of the gD mutants to the receptors HVEM (HveA) and nectin-1 (HveC). One of the mutants, gD(inverted Delta 34t), failed to bind(More)