Learn More
A special version of the NOAA HYSPLIT_4 model has been developed and used to estimate the atmospheric fate and transport of mercury in a North American modeling domain. Spatial and chemical interpolation procedures were used to expand the modeling results and provide estimates of the contribution of each source in a 1996 anthropogenic US/Canadian emissions(More)
A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects,(More)
Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with available measurements from 11 monitoring stations of the EMEP measurement network.(More)
Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were compared against mercury species observed at four monitoring stations in Central(More)
Atmospheric deposition is a significant loading pathway for polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxin) to the Great Lakes. An innovative approach using NOAA's HYSPLIT atmospheric fate and transport model was developed to estimate the 1996 dioxin contribution to each lake from each of 5,700 point sources and 42,600 area sources in a(More)
Between April 28 and July 19 of 2010, the U.S. Coast Guard conducted in situ oil burns as one approach used for the management of oil spilled after the explosion and subsequent sinking of the BP Deepwater Horizon platform in the Gulf of Mexico. The purpose of this paper is to describe a screening level assessment of the exposures and risks posed by the(More)
Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne(More)
An overview is given of the precipitation chemistry field and laboratory programs of the former U.S.S.R. World Meteorological Organization Background Air Pollution Monitoring Program (WMO BAPMoN). Field and laboratory procedures are discussed, siting criteria are examined, station histories are documented, and four Soviet quality assurance techniques are(More)
  • R S Artz
  • 1989
The National Oceanic and Atmospheric Administration Geophysical Monitoring for Climatic Change program has operated four remote precipitation chemistry stations at two polar and two tropical Pacific locations for over a decade. Station geography and meteorology is discussed and a summary of the hydrogen, sulfate, and nitrate ion data collected since 1980 is(More)
Assessments of the relative merits of alternative acid-rain control strategies revolve around considerations of potential benefit per unit effort and/or cost. A question that often arises concerns the changes in deposition that would follow if all industrial (or societal) emissions were eliminated, in which case precipitation chemistry would be dominated by(More)
  • 1