Learn More
The nucleus of the solitary tract (NST), located in the dorsomedial medulla, is the site of visceral sensory modulation of a variety of homeostatic reflexes. Given recent advancements in the understanding of active regulation of synaptic information flow by astrocytes, we sought to determine whether afferent sensory inputs to NST neurons also activates NST(More)
Excitotoxic cell death due to glutamate release is important in the secondary injury following CNS trauma or ischemia. Proinflammatory cytokines also play a role. Both glutamate and tumor necrosis factor-alpha (TNF(alpha)) are released immediately after spinal cord injury. Neurophysiological studies show that TNF(alpha) can potentiate the effects of(More)
The possible role of astrocytes in the regulation of feeding has been overlooked. It is well-established that the endothelial cells constituting the blood-brain barrier transport leptin from blood to brain and that hypothalamic neurons respond to leptin to induce anorexic signaling. However, few studies have addressed the role of astrocytes in either leptin(More)
The afferent projections to the dorsal motor nucleus of the vagus (DMN) were investigated by iontophoretically infusing horseradish peroxidase (HRP) into that neural region of the rat. After the tetramethylbenzidine histochemical procedure was performed on the HRP-injected brains, projections to the DMN from several areas were observed including the nucleus(More)
1. Previous anatomical studies indicate that the nucleus of the solitary tract, pars centralis (NSTc) contains the neurones which receive vagal afferent input from the oesophagus. The purpose of the present study was to characterize the NSTc circuits in the medulla that may be responsible for oesophageal control of gastric motility. 2. Moderate balloon(More)
Electrophysiological and physiological studies have suggested that the ventral medullary gigantocellular reticular nuclei (composed of the gigantocellular ventralis and pars alpha nuclei as well as the adjacent lateral paragigantocellular nucleus; abbreviated Gi-LPGi complex) provide descending control of pelvic floor organs (Mackel [1979] J. Physiol.(More)
This study combined functional and structural magnetic resonance imaging techniques, optimized for the human brainstem, to investigate activity in brainstem respiratory control centres in a group of 12 healthy human volunteers. We stimulated respiration with carbon dioxide (CO(2)), and utilized novel methodology to separate its vascular from its neuronal(More)
Bleeding head injury is associated with gastric stasis, a symptom of collapse of autonomic control of the gut described by Cushing around 1932. Recent work suggests that the proteinase thrombin, produced secondary to bleeding, may be the root cause. Results from our in vivo physiological studies show that fourth ventricular injection of PAR1 agonists, as(More)
Tumor necrosis factor [TNF] produces a profound anorexia associated with gastrointestinal stasis. Our work suggests that the principal site of action of TNF to cause this change in gastric function is via vagal afferents within the nucleus of the solitary tract [NST]. Excitation of these afferents presumably causes gastric stasis by activating downstream(More)
Current treatments for acute spinal cord injury are based on animal models of human spinal cord injury (SCI). These models have shown that the initial traumatic injury to cord tissue is followed by a long period of secondary injury that includes a number of cellular and biochemical cascades. These secondary injury processes are potential targets for(More)