Richard R Hardy

Learn More
We have resolved B220+ IgM- B-lineage cells in mouse bone marrow into four fractions based on differential cell surface expression of determinants recognized by S7 (leukosialin, CD43), BP-1, and 30F1 (heat stable antigen). Functional differences among these fractions can be correlated with Ig gene rearrangement status. The largest fraction, lacking S7,(More)
B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on(More)
Although immature/transitional peripheral B cells may remain susceptible to selection pressures before full maturation, the nature and timing of these selection events remain unclear. We show that correlated expression of surface (s) IgM (sIgM), CD23, and AA4 defines three nonproliferative subpopulations of immature/transitional peripheral B cells. We(More)
Notch receptors regulate fate decisions in many cells. One outcome of Notch signaling is differentiation of bipotential precursors into one cell type versus another. To investigate consequences of Notch1 expression in hematolymphoid progenitors, mice were reconstituted with bone marrow (BM) transduced with retroviruses encoding a constitutively active form(More)
We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1-) mice. Complementation with a membrane mu heavy chain (mu HC) gene allows progression of developmentally arrested Rag-1- pro-B-cells to the small pre-B cell stage, whereas the(More)
RAG1 and RAG2 are essential for V(D)J recombination and lymphocyte development. These genes are thought to encode a transposase derived from a mobile genetic element that was inserted into the vertebrate genome 450 million years ago. The regulation of RAG1 and RAG2 was investigated in vivo with bacterial artificial chromosome (BAC) transgenes containing a(More)
The TCL1 gene at 14q32.1 is involved in chromosomal translocations and inversions in mature T cell leukemias. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. In transgenic animals, the(More)
In the past 3 years, altered expression of the HEF1/CAS-L/NEDD9 scaffolding protein has emerged as contributing to cancer metastasis in multiple cancer types. However, whereas some studies have identified elevated NEDD9 expression as prometastatic, other work has suggested a negative role in tumor progression. We here show that the Nedd9-null genetic(More)
The expression of B lineage associated genes during early B cell differentiation stages is not firmly established. Using cell surface markers and multiparameter flow cytometry, bone marrow (BM) cells can be resolved into six fractions, representing sequential stages of development; i.e., pre-Pro-B, early Pro-B, late Pro-B/large Pre-B, small Pre-B, immature(More)
Lymphocyte development is critically influenced by self-antigens. T cells are subject to both positive and negative selection, depending on their degree of self-reactivity. Although B cells are subject to negative selection, it has been difficult to test whether self-antigen plays any positive role in B cell development. A murine model system of naturally(More)