Richard P. Kennan

Learn More
The factors affecting the rate of loss of transverse magnetization in gradient echo and spin-echo pulse sequences have been quantified using computer modeling for media containing arrays of susceptibility variations. The results are particularly relevant for describing the signal losses that occur in tissues containing capillaries of altered intrinsic(More)
A simple model is presented that allows quantitative separation of the contributions of signals from water in blood and extravascular parenchyma due to changes in blood oxygenation, induced either by brain activation or by alteration of inspired oxygen. The separation is based on the progressive attenuation of the signals in the vasculature of different(More)
An NMR method is applied for separating blood volume and magnetic susceptibility effects in response to neuronal stimulation in a rat model. The method uses high susceptibility contrast agents to enhance blood volume induced signal changes. In the absence of exogenous agent, the dominant source of signal change on neuronal activation is associated with the(More)
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret(More)
The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which is sensitive to vascular paramagnetic deoxyhemoglobin, is dependent on regional values of cerebral metabolic rate of oxygen utilization (CMR(O2)), blood flow (CBF), and volume (CBV). Induced changes in deoxyhemoglobin function as an endogenous contrast(More)
A new type of tissue-equivalent medium for magnetic resonance imaging of the dose distributions produced by ionizing radiation has been developed. Agarose gel is infused with acrylamide and N,N'-methylene-bis-acrylamide (Bis) comonomers, which are readily polymerized by free radical initiators in de-aerated aqueous solutions. Polymerization and(More)
Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance,(More)
Respiration causes variations in the signals acquired during magnetic resonance imaging (MRI) and therefore is a significant source of noise in functional brain imaging. A primary component of respiratory noise may arise from variations of bulk susceptibility or air volume in the chest. Here we investigate the nature of the image artefacts that can be(More)
Near infrared spectroscopy is an increasingly important tool for the investigation of human brain function, however, to date there have been few systematic evaluations of accompanying thermal effects due to absorption. We have measured the spatial distribution of temperature changes during near infrared irradiation (789 nm) as a function of laser power, in(More)
Brain blood volume changes in the rat in response to 5-HT(1A) agonist and antagonist administration were measured using susceptibility contrast enhanced magnetic resonance imaging (MRI). Administration of the 5-HT(1A) agonist 8-OH-DPAT resulted in decreases in fractional brain blood volumes. Administration of the 5-HT(1A) antagonist WAY-100635 following a(More)