Richard Odegrip

Learn More
The A protein of bacteriophage P2 initiates rolling circle DNA replication by a single-stranded cut at the origin. Two well-conserved tyrosine residues, interspaced by three amino acid residues, are required for the cleavage-joining activity of the protein. The functional relationship between these tyrosine residues was investigated by site-directed(More)
The P2-like coliphages are highly similar; the structural genes show at least 96% identity. However, at two loci they have genes believed to be horizontally transferred. We show that the genetic content at the second loci, the TO region, contains six completely different sequences with high AT contents and with different open reading frames. The product of(More)
Bacteriophage P2 requires several host proteins for lytic replication, including helicase DnaB but not the helicase loader, DnaC. Some genetic studies have suggested that the loading is done by a phage-encoded protein, P2 B. However, a P2 minichromosome containing only the P2 initiator gene A and a marker gene can be established as a plasmid without(More)
The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products(More)
Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains 5 proteins (OrfX1, OrfX2, OrfX3, P47 and NTNH). We here(More)
Bacteriophage P2 is a temperate phage capable of integrating its DNA into the host genome by site-specific recombination upon lysogenization. Integration and excision of the phage genome requires P2 integrase, which performs recognition, cleavage and joining of DNA during these processes. This work presents the high-resolution crystal structure of the(More)
The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the(More)
  • 1