Richard O. Prum

Learn More
We use a tetrahedral color space to describe and analyze male plumage color variation and evolution in a clade of New World buntings--Cyanocompsa and Passerina (Aves: Cardinalidae). The Goldsmith color space models the relative stimulation of the four retinal cones, using the integrals of the product of plumage reflectance spectra and cone sensitivity(More)
Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves--a clade that encompasses nearly all living bird species--remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of(More)
Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5->40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity(More)
This paper documents congruence in geographical patterns of speciation for four clades of birds having taxa endemic to the same areas within the Neotropics. Two genera, Pionopsitta parrots and Selenidera toucans, corroborate a well known biogeographic disjunction in which taxa endemic to southern Central America and the Chocó region of northwestern South(More)
The evolutionary origin of feathers has long been obscured because no morphological antecedents were known to the earliest, structurally modern feathers of Archaeopteryx. It has been proposed that the filamentous integumental appendages on several theropod dinosaurs are primitive feathers; but the homology between these filamentous structures and feathers(More)
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers,(More)
Progress on the evolutionary origin and diversification of feathers has been hampered by conceptual problems and by the lack of plesiomorphic feather fossils. Recently, both of these limitations have been overcome by the proposal of the developmental theory of the origin of feathers, and the discovery of primitive feather fossils on nonavian theropod(More)
  • R O Prum
  • The Journal of experimental zoology
  • 1999
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather(More)
Structural colours of avian skin have long been hypothesized to be produced by incoherent (Rayleigh/Tyndall) scattering. We investigated the colour, anatomy, nanostructure and biophysics of structurally coloured skin, ramphotheca and podotheca from 31 species of birds from 17 families in 10 orders from across Aves. Integumentary structural colours of birds(More)
For as long as dinosaurs have been known to exist, there has been speculation about their appearance. Fossil feathers can preserve the morphology of color-imparting melanosomes, which allow color patterns in feathered dinosaurs to be reconstructed. Here, we have mapped feather color patterns in a Late Jurassic basal paravian theropod dinosaur. Quantitative(More)