Richard O Otieno

Learn More
OBJECTIVE Since the primary hematological complication in both pediatric HIV-1 and malaria is anemia, co-infection with these pathogens may promote life-threatening severe malarial anemia (SMA). The primary objective of the study was to determine if HIV-1 exposure [HIV-1(exp)] and/or HIV-1 infection [HIV-1(+)] increased the prevalence of SMA in children(More)
Malarial anemia (MA) is a multifactorial disease for which the complex etiological basis is only partially defined. The association of clinical, nutritional, demographic, and socioeconomic factors with parasitemia, anemia, and MA was determined for children presenting at a hospital in a holoendemic area of Plasmodium falciparum transmission in western(More)
Severe malarial anemia (MA) is the primary manifestation of severe malaria among children in areas of holoendemic Plasmodium falciparum transmission. Although overproduction of inflammatory-derived cytokines are implicated in the immunopathogenesis of severe MA, chemokines such as regulated on activation, normal T-cell expressed and secreted (RANTES, CCL5)(More)
Severe malarial anemia (SMA), caused by Plasmodium falciparum infections, is one of the leading causes of childhood mortality in sub-Saharan Africa. Although the molecular determinants of SMA are largely undefined, dysregulation in host-derived inflammatory mediators influences disease severity. Macrophage migration inhibitory factor (MIF) is an important(More)
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that regulates innate and adaptive immune responses to bacterial and parasitic infections. Functional promoter variants in the MIF gene influence susceptibility to inflammatory diseases in Caucasians. As the role of genetic variation in the MIF gene in conditioning malaria disease(More)
Protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG antibodies to Fcgamma receptors. Polymorphic variability in Fcgamma RIIa (H/R-131) is associated with differential binding of IgG subtypes and malaria disease outcomes. However, the role of Fcgamma RIIa-131 variability in conditioning(More)
Severe malarial anemia (SMA) is a leading cause of mortality among children in sub-Saharan Africa. Although the novel cytokine, interleukin (IL)-23, promotes anemia in chronic inflammatory diseases, the role of IL-23 in SMA remains undefined. Since IL-23 and IL-12 share the IL-12p40 subunit and IL-12Rbeta1 receptor, and are down-regulated by IL-10,(More)
  • 1