Learn More
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human(More)
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show(More)
Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map(More)
Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes.(More)
High-resolution genetic maps are required for mapping complex traits and for the study of recombination. We report the highest density genetic map yet created for any organism, except humans. Using more than 10,000 single nucleotide polymorphisms evenly spaced across the mouse genome, we have constructed genetic maps for both outbred and inbred mice, and(More)
MOTIVATION To meet the demands of large-scale sequencing, thousands of clones must be fingerprinted and assembled into contigs. To determine the order of clones, a typical experiment is to digest the clones with one or more restriction enzymes and measure the resulting fragments. The probability of two clones overlapping is based on the similarity of their(More)
DNA sequence variants in specific genes or regions of the human genome are responsible for a variety of phenotypes such as disease risk or variable drug response. These variants can be investigated directly, or through their non-random associations with neighbouring markers (called linkage disequilibrium (LD)). Here we report measurement of LD along the(More)
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore(More)
This note describes the program EST_GENOME for aligning spliced DNA to unspliced genomic DNA. It is written in ANSI C and has been tested under Digital OSF3.2. The spurce code and documentation are available from ftp:// The prediction of genes in uncharacterized genomic DNA sequence is currently one of the main problems facing sequence annotators. Methods(More)
SMART (Simple Modular Architecture Research Tool, http://smart.embl-heidelberg.de) is a web-based resource used for the annotation of protein domains and the analysis of domain architectures, with particular emphasis on mobile eukaryotic domains. Extensive annotation for each domain family is available, providing information relating to function,(More)