Learn More
Songbirds learn and maintain their songs via auditory experience. Neurons in many telencephalic nuclei important to song production and development are song selective, firing more to forward auditory playback of the bird's own song (BOS) than to reverse BOS or conspecific songs. Elucidating circuits that generate these responses can localize where auditory(More)
Synaptic interactions between telencephalic neurons innervating descending motor or basal ganglia pathways are essential in the learning, planning, and execution of complex movements. Synaptic interactions within the songbird telencephalic nucleus HVC are implicated in motor and auditory activity associated with learned vocalizations. HVC contains(More)
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons(More)
Before vision, retinal ganglion cells produce spontaneous waves of action potentials. A crucial question is whether this spontaneous activity is transmitted to lateral geniculate nucleus (LGN) neurons. Using a novel in vitro preparation, we report that LGN neurons receive periodic barrages of postsynaptic currents from the retina that drive them to fire(More)
The avian forebrain nucleus, the lateral magnocellular nucleus of the anterior neostriatum (LMAN), is necessary for normal song development because LMAN lesions made in juvenile birds disrupt song production but do not disrupt song when made in adults. Although these age-limited behavioral effects implicate LMAN in song learning, a potential confound is(More)
Songbirds learn to sing by memorizing a tutor song that they then vocally mimic using auditory feedback. This developmental sequence suggests that brain areas that encode auditory memories communicate with brain areas for learned vocal control. In the songbird, the secondary auditory telencephalic region caudal mesopallium (CM) contains neurons that encode(More)
Nucleus HVC of the avian song system is essential to song patterning and is a prime site for auditory-vocal integration important to vocal learning. These processes require precise, high-frequency action potential activity, which, in other systems, is often correlated with the expression of calcium-binding proteins. To characterize any such functional(More)
Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related(More)
Androgens potently regulate the development of learned vocalizations of songbirds. We sought to determine whether one action of androgens is to functionally modulate the development of synaptic transmission in two brain nuclei, the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) and the robust nucleus of the archistriatum (RA),(More)
Birdsong, like human speech, is learned via auditory experience during a developmentally restricted sensitive period. Within projection neurons of two avian forebrain nuclei, NMDA receptor-mediated EPSCs (NMDA-EPSCs) become fast during song development, a transition posited to limit learning. To discover whether slow NMDA-EPSCs at these synapses are(More)