Learn More
We propose a general framework for prediction of predefined tumor classes using gene expression profiles from microarray experiments. The framework consists of 1) evaluating the appropriateness of class prediction for the given data set, 2) selecting the prediction method, 3) performing cross-validated class prediction, and 4) assessing the significance of(More)
MOTIVATION Recent technological advances such as cDNA microarray technology have made it possible to simultaneously interrogate thousands of genes in a biological specimen. A cDNA microarray experiment produces a gene expression 'profile'. Often interest lies in discovering novel subgroupings, or 'clusters', of specimens based on their profiles, for example(More)
Developments in whole genome biotechnology have stimulated statistical focus on prediction methods. We review here methodology for classifying patients into survival risk groups and for using cross-validation to evaluate such classifications. Measures of discrimination for survival risk models include separation of survival curves, time-dependent ROC curves(More)
Many gene expression studies attempt to develop a predictor of pre-defined diagnostic or prognostic classes. If the classes are similar biologically, then the number of genes that are differentially expressed between the classes is likely to be small compared to the total number of genes measured. This motivates a two-step process for predictor development,(More)
PURPOSE A common goal of gene expression microarray studies is the development of a classifier that can be used to divide patients into groups with different prognoses, or with different expected responses to a therapy. These types of classifiers are developed on a training set, which is the set of samples used to train a classifier. The question of how(More)
MOTIVATION The T-cell receptor, a major histocompatibility complex (MHC) molecule, and a bound antigenic peptide, play major roles in the process of antigen-specific T-cell activation. T-cell recognition was long considered exquisitely specific. Recent data also indicate that it is highly flexible, and one receptor may recognize thousands of different(More)
Abbreviations: autism Aut Tourette Syndrome TS autoimmune/ inflammatory disorders AI multiple sclerosis MS systemic lupus erythematosus SLE systemic lupus erythematosus SLE-NP with neuropsychiatric phenotype Crohn's disease CD Psoriasis PS Type I diabetes IDDM Ankylosing spondylitis ANK Obsessive compulsive disorder OCD Attention Deficit Hyperactivity(More)
The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to 'omics'-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to(More)
BACKGROUND Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These(More)