Richard M. Cripps

Learn More
The homeobox gene tinman and the nuclear receptor gene seven-up are expressed in mutually exclusive dorsal vessel cells in Drosophila, however, the physiological reason for this distinction is not known. We demonstrate that tin and svp-lacZ expression persists through the larval stage to the adult stage in the same pattern of cells expressing these genes in(More)
Formation of the heart is dependent on an intricate cascade of developmental decisions. Analysis of the molecules and mechanisms involved in the specification of cardiac cell fates, differentiation and diversification of cardiac muscle cells, and morphogenesis and patterning of different cardiac cell types has revealed an evolutionarily conserved network of(More)
MEF2 is a MADS-box transcription factor required for muscle development in Drosophila. Here, we show that the bHLH transcription factor Twist directly regulates Mef2 expression in adult somatic muscle precursor cells via a 175-bp enhancer located 2245 bp upstream of the transcriptional start site. Within this element, a single evolutionarily conserved E box(More)
Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting(More)
The Drosophila melanogaster dorsal vessel is a linear organ that pumps blood through the body. Blood enters the dorsal vessel in a posterior chamber termed the heart, and is pumped in an anterior direction through a region of the dorsal vessel termed the aorta. Although the genes that specify dorsal vessel cell fate are well understood, there is still much(More)
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the(More)
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped(More)
Drosophila indirect flight muscles (IFMs) contain a 35 kDa protein which cross-reacts with antibodies to the IFM specific protein troponin-H isoform 34 (TnH-34). Peptide fingerprinting and peptide sequencing showed that this 35 kDa protein is glutathione S-transferase-2 (GST-2). GST-2 is present in the asynchronous indirect flight muscles but not in the(More)
Actin is a ubiquitous and highly conserved eukaryotic protein required for cell motility and locomotion. In this manuscript, we characterize the four muscle actin genes of the insect Drosophila virilis and demonstrate strong similarities between the D. virilis genes and their homologues in Drosophila melanogaster; intron locations are conserved, and there(More)