Richard M Breyer

Learn More
Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE(2), PGF(2 alpha), PGI(2), TxA(2), and PGD(2). These autacrine lipid mediators interact with specific members of a family of distinct G-protein-coupled prostanoid receptors, designated EP, FP, IP, TP, and DP, respectively. Each of these receptors has been cloned, expressed, and(More)
The cyclooxygenases COX-1 and COX-2 catalyze the first committed step of prostaglandin synthesis from arachidonic acid. Previous studies in rodent stroke models have shown that the inducible COX-2 isoform promotes neuronal injury, and the administration of COX-2 inhibitors reduces infarct volume. We investigated the function of PGE2, a principal(More)
Prostaglandins are lipid-derived autacoids that modulate many physiological systems including the CNS, cardiovascular, gastrointestinal, genitourinary, endocrine, respiratory, and immune systems. In addition, prostaglandins have been implicated in a broad array of diseases including cancer, inflammation, cardiovascular disease, and hypertension.(More)
Epidemiological studies demonstrate that chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) in normal aging populations reduces the risk of developing Alzheimer's disease (AD). NSAIDs inhibit the enzymatic activity of cyclooxygenase-1 (COX-1) and inducible COX-2, which catalyze the first committed step in the synthesis of prostaglandins. These(More)
Prostaglandin E(2) (PGE(2)), a major COX metabolite, plays important roles in several facets of tumor biology. We characterized the contribution of the PGE(2) EP2 receptor to cancer-associated immune deficiency using EP2(-/-) mice. EP2(-/-) mice exhibited significantly attenuated tumor growth and longer survival times when challenged with MC26 or Lewis lung(More)
Prostaglandins (PGs) are ubiquitous lipid mediators derived from cyclooxygenase metabolism of arachidonic acid that exert a broad range of physiologic activities, including modulation of inflammation, ovulation and arterial blood pressure. PGE2, a chief cyclooxygenase product, modulates blood pressure and fertility, although the specific G protein-coupled(More)
Recent studies suggest a neuroprotective function of the PGE2 EP2 receptor in excitotoxic neuronal injury. The function of the EP2 receptor was examined at time points after excitotoxicity in an organotypic hippocampal model of N-methyl-D-aspartate (NMDA) challenge and in a permanent model of focal forebrain ischemia. Activation of EP2 led to significant(More)
The cysteinyl leukotrienes (CysLTs) are important mediators of human asthma. Pharmacologic and clinical studies show that the CysLTs exert most of their bronchoconstrictive and proinflammatory effects through activation of a putative, 7-transmembrane domain, G-protein-coupled receptor, the CysLT1 receptor. The initial molecular characterization of the(More)
Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially(More)
A complex therapeutic challenge for Alzheimer's disease (AD) is minimizing deleterious aspects of microglial activation while maximizing beneficial actions, including phagocytosis/clearance of amyloid beta (Abeta) peptides. One potential target is selective suppression of microglial prostaglandin E(2) receptor subtype 2 (EP2) function, which influences(More)