Richard L. Tutwiler

Learn More
OBJECTIVE The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements,(More)
Our principal finding from this study is that there were changes at the level of brain electrical activity (EEG) during cognitive tasks while subjects were instructed to visually recognize non-stable postures of a computer animated human body model. In particular, there was clear enhancement of the amplitude within the gamma band (30-50 Hz) activity(More)
There is a growing body of knowledge indicating long-lasting residual electroencephalography (EEG) abnormalities in concussed athletes that may persist up to 10-year postinjury. Most often, these abnormalities are initially overlooked using traditional concussion assessment tools. Accordingly, premature return to sport participation may lead to recurrent(More)
The proposed CMOS ultrasound transceiver chip will enable the development of portable high resolution, high-frequency ultrasonic imaging systems. The transceiver chip is designed for close-coupled MEMS transducer arrays which operate with a 3.3-V power supply. In addition, a transmit digital beamforming system architecture is supported in this work. A(More)
The question regarding the invariant movement properties the central nervous system may organize to accomplish different motor task demands as reflected in EEG remains unsolved. Surprisingly, no systematic electrocortical research in humans has related movement preparation with different movement distance, although this area has been widely investigated in(More)
Separation of the text and graphics layers in maps with dense and overlapping sets of features (e.g. topographic maps) is a challenging problem. Multi Angled Parallelism (MAP) provides an efficient tool to detect miscellaneous linear features using directional morphological operations and higher order feature representation. However, in its original(More)
Image resizing is performed for many reasons in image processing. Often, it is done to reduce or enlarge an image for display. It is also done to reduce the bandwidth needed to transmit an image. Most image resizing algorithms work based on principles of spatial or spatial frequency interpolation. One drawback to these algorithms is that they are not image(More)