Learn More
The goal of the present study was to provide a comprehensive and quantitative description of neurons immunoreactive for gamma-aminobutyric acid (GABA) in the inferior colliculus (IC) of the cat. Neurons were investigated with two different antisera and two different incubation methods. Free-floating frozen or vibratome-cut sections were incubated either(More)
Neurons in the lateral superior olive are optimally excited by stimulation of the ipsilateral ear, as are those in the inferior colliculus by stimulation of the contralateral ear. This reversal of ear dominance may result, in part, from distinct crossed excitatory and uncrossed inhibitory pathways ascending from the lateral superior olive. To explore this(More)
Neurotransmitter-specific uptake and retrograde axonal transport of [3H]glycine were used to identify glycinergic projections to the inferior colliculus in chinchillas and guinea pigs. Six h after injection of [3H]glycine in the inferior colliculus, autoradiographically labeled cells were found ipsilaterally in the ventral nucleus of the lateral lemniscus,(More)
The aim of the present study was to investigate whether projections from the dorsal cochlear nucleus (DCN) to the anteroventral cochlear nucleus (AVCN) use either of two inhibitory transmitters, glycine or GABA. Retrograde HRP labeling of DCN-to-AVCN projection neurons was combined with postembedding immunocytochemistry in the DCN of guinea pigs. Following(More)
The central nucleus of the inferior colliculus is a laminated structure composed of oriented dendrites and similarly oriented afferent fibers that provide a substrate for tonotopic organization. Although inputs from many sources converge in the inferior colliculus, how axons from these sources contribute to the laminar pattern has remained unclear. Here, we(More)
Induction of the cellular fos gene (c-fos) is one of the earliest transcriptional changes observed following neuronal excitation. Although not an activity marker in the strict electrophysiological sense, many neurons in the central nervous system increase their c-fos expression after periods of sustained stimulation at physiological levels of intensity. In(More)
A novel and robust projection from gamma-aminobutyric acid-containing (GABAergic) inferior colliculus neurons to the media] geniculate body (MGB) was discovered in the cat using axoplasmic transport methods combined with immunocytochemistry. This input travels with the classical inferior colliculus projection to the MGB, and it is a direct ascending(More)
Retrograde transport of horseradish peroxidase was combined with immunocytochemistry to identify the origins of potential gamma-aminobutyric acid (GABA) -ergic and glycinergic inputs to different subdivisions of the cochlear nucleus. Projection neurons in the inferior colliculus, superior olivary complex, and contralateral cochlear nucleus were examined,(More)
A sizeable, feedforward, GABAergic projection exists from the inferior colliculus to the medial geniculate body in cats. We compared the dimensions of GABA-immunoreactive and non-immunoreactive axons in the brachium of the cat inferior colliculus, and demonstrate that GABA-immunoreactive axons are among the largest of brachial axons. We propose that, based(More)
The distribution of GABAergic endings was examined histochemically in the ventral cochlear nucleus (VCN) of the cat using an antibody to glutamate decarboxylase (GAD), the synthetic enzyme for GABA. Immunoreactive (GAD+) endings appeared in all subdivisions of the cat VCN. Each of the principal cell types had a characteristic labeling pattern, based on the(More)