Learn More
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament accessory protein that binds tightly to myosin, but despite evidence that mutations in the cMyBP-C gene comprise a frequent cause of hypertrophic cardiomyopathy, relatively little is known about the role(s) of cMyBP-C in myocardium. Based on earlier studies demonstrating the potential importance(More)
SLControl is a computerized data acquisition and analysis system that was developed in our laboratory to help perform mechanical experiments using striated muscle preparations. It consists of a computer program (Windows 2000 or later) and a commercially available data acquisition board (16-bit resolution, DAP5216a, Microstar Laboratories, Bellevue, WA).(More)
  • Q Gu, R L Moss
  • 1996
Evidence for nongenomic actions of steroids is now coming from a variety of fields of steroid research. Mechanisms of steroid action are being studied with regard to the membrane receptors and the activation of second messengers. The present study investigated the mechanism for the rapid effect of estrogen on acutely dissociated hippocampal CA1 neurons by(More)
The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady-state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast-twitch(More)
Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca(2+) sensitivity of force (pCa(50)), PKA treatment has(More)
Myosin-binding protein-C (MyBP-C) is a thick filament-associated protein that binds tightly to myosin. Given that cMyBP-C may act to modulate cooperative activation of the thin filament by constraining the availability of myosin cross-bridges for binding to actin, we investigated the role of MyBP-C in the regulation of cardiac muscle contraction. We(More)
1. Single twitch fibres were isolated from anterior tibial muscles of the frog, Rana pipiens. The relationship between sarcomere length and steady tetanic tension at 5 degrees C was obtained from these living fibres in the range of sarcomere lengths between about 2.2 and 1.3 microns . These fibres were then either mechanically or chemically skinned. 2.(More)
1. Maximum velocity of shortening (Vmax) and compositions of myosin heavy chain (MHC) and myosin light chain (MLC) isoforms were determined in single fibres from the soleus or the lateral region of the quadriceps (vastus lateralis) muscles in man. Muscle samples were obtained by percutaneous biopsy, and membranes were permeabilized by glycerol treatment(More)
The ovarian steroids exert both long-term and short-term actions on neurons involving different cellular mechanisms. We have investigated the long-term and short-term effects of estrogen on the electrophysiological properties of CA1 neurons utilizing intracellular recordings in hippocampal slices prepared from ovariectomized female rats. An in vivo(More)
Beta-adrenergic agonists induce protein kinase A (PKA) phosphorylation of the cardiac myofilament proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI), resulting in enhanced systolic function, but the relative contributions of cMyBP-C and cTnI to augmented contractility are not known. To investigate possible roles of cMyBP-C in this response,(More)