Learn More
Corticotropin-releasing factor (CRF) and the related urocortin peptides mediate behavioral, cognitive, autonomic, neuroendocrine and immunologic responses to aversive stimuli by activating CRF(1) or CRF(2) receptors in the central nervous system and anterior pituitary. Markers of hyperactive central CRF systems, including CRF hypersecretion and abnormal(More)
BACKGROUND There is accumulating evidence for a link between trauma exposure, posttraumatic stress disorder (PTSD) and diminished health status. To assess PTSD-related biological burden, we measured biological factors that comprise metabolic syndrome, an important established predictor of morbidity and mortality, as a correlate of long-term health risk in(More)
Receptors for corticotropin-releasing factor (CRF) are members of a family of G protein-coupled receptors ("Family B") that respond to a variety of structurally dissimilar releasing factors, neuropeptides, and hormones (including secretin, growth hormone-releasing factor, calcitonin, parathyroid hormone, pituitary adenylate cyclase-activating polypeptide,(More)
High levels of cortisol, a sign of potential hypothalamic-pituitary-adrenal (HPA) axis dysregulation, have been associated with poor cognitive outcomes in older adults. Most cortisol research has focused on hippocampal-related abilities such as episodic memory; however, the presence of glucocorticoid receptors in the human prefrontal cortex suggests that(More)
The corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) are crucial mediators of physiological and behavioral responses to stress. In animals, CRF1 appears to primarily mediate CRF-induced anxiety-like responses, but the role of CRF2 during stress is still unclear. Here we report the effects of CRF1 and CRF2 on the magnitude and plasticity of(More)
Understanding inter-individual differences in stress response requires the explanation of genetic influences at multiple phenotypic levels, including complex behaviours and the metabolic responses of brain regions to emotional stimuli. Neuropeptide Y (NPY) is anxiolytic and its release is induced by stress. NPY is abundantly expressed in regions of the(More)
Abnormal signaling at corticotropin-releasing factor CRF1 and CRF2 receptors might contribute to the pathophysiology of stress-related disorders such as anxiety, depression and eating disorders, in addition to cardiac and inflammatory disorders. Recently, molecular characterization of CRF1 and CRF2 receptors and the cloning of novel ligands--urocortin,(More)
Markers of hyperactive central corticotropin releasing factor (CRF) systems and CRF-related single nucleotide polymorphisms (SNPs) have been identified in patients with anxiety and depressive disorders. Designing more effective antagonists may now be guided by data showing that small molecules bind to transmembrane domains. Specifically, CRF(1) receptor(More)
OBJECTIVES To compare relationships between the sleep-wake cycle and endogenous circadian rhythms in young and older adults and to examine correlates between evening naps and circadian rhythms in older adults. DESIGN For 1 week of home recording, subjects wore wrist-activity monitors and kept daily sleep logs. After the home monitoring, subjects entered(More)
Although glucocorticoid receptors are highly expressed in the prefrontal cortex, the hippocampus remains the predominant focus in the literature examining relationships between cortisol and brain. We examined phenotypic and genetic associations of cortisol levels with the thickness of prefrontal and anterior cingulate cortex regions, and with hippocampal(More)