Learn More
A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of(More)
Respiratory motion is a major limiting factor in improving image resolution and signal-to-noise ratio in MR coronary imaging. In this work the effects of respiration on the cardiac position were studied quantitively by imaging the heart during diastole at various positions of tidal respiration with a breath-hold segmented fast gradient echo technique. It(More)
BACKGROUND & AIMS Accurate detection of hepatic fibrosis is crucial for assessing prognosis and candidacy for treatment in patients with chronic liver disease. Magnetic resonance (MR) elastography, a technique for quantitatively assessing the mechanical properties of soft tissues, has been shown previously to have potential for noninvasively detecting liver(More)
An important part of thermal ablation therapy is the assessment of the spatial extent of tissue coagulation. In this work, the mechanical properties of thermally-ablated tissue were quantitatively evaluated using magnetic resonance elastography (MRE). This study shows that the mechanical properties of focused ultrasound ablated tissue are significantly(More)
Magnetic resonance elastography (MRE) is a phase-contrast-based MRI imaging technique that can directly visualize and quantitatively measure propagating acoustic strain waves in tissue-like materials subjected to harmonic mechanical excitation. The data acquired allows the calculation of local quantitative values of shear modulus and the generation of(More)
An adaptive technique for measuring and correcting the effects of patient motion during magnetic resonance image acquisition was developed and tested. A set of algorithms that can reverse the effects of object displacements and phase shifts was used. These algorithms essentially transfer the frame of reference of the image reconstruction from the static(More)
The purpose of this study was to obtain normative data using magnetic resonance elastography (MRE) (a) to obtain estimates of the shear modulus of human cerebral tissue in vivo and (b) to assess a possible age dependence of the shear modulus of cerebral tissue in healthy adult volunteers. MR elastography studies were performed on tissue-simulating gelatin(More)
While the contractile properties of skeletal muscle have been studied extensively, relatively little is known about the elastic properties of muscle in vivo. Magnetic resonance elastography (MRE) is a phase contrast-based method for observing shear waves propagating in a material to determine its stiffness. In this work, MRE is applied to skeletal muscle(More)
OBJECTIVE The purpose of our study was to compare the utility of MR elastography (MRE) and diffusion-weighted imaging (DWI) in characterizing fibrosis and chronic hepatitis in patients with chronic liver diseases. SUBJECTS AND METHODS Seventy-six patients with chronic liver disease underwent abdominal MRI, MRE, and DWI. Severities of liver fibrosis and(More)
OBJECTIVE Liver stiffness is associated with portal hypertension in patients with chronic liver disease. However, the relation between spleen stiffness and clinically significant portal hypertension remains unknown. The purposes of this study were to determine the feasibility of measuring spleen stiffness with MR elastography and to prospectively test the(More)