Richard Knochenmuss

Learn More
Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common(More)
A quantitative model of primary ionization in ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) is presented. It includes not only photochemical processes such as exciton pooling, but also the effects of the desorption event. The interplay of these two is found to be a crucial aspect of the MALDI process. The desorbing plume is modeled as(More)
A molecular dynamics model of UV-MALDI including ionization processes is presented. In addition to the previously described breathing sphere approach developed for simulation of laser ablation/desorption of molecular systems, it includes radiative and nonradiative decay, exciton hopping, two pooling processes, and electron capture. The results confirm the(More)
The recently developed model for primary and secondary UV-MALDI ion formation (Knochenmuss, R. J. Mass Spectrom. 2002, 37, 867-877. Knochenmuss, R. Anal. Chem. 2003, 75, 2199.) is applied to questions regarding photoionization pathways and electron versus negative ion production. Two-photon ionization of the matrix in direct contact with analyte is possible(More)
A combination of liquid matrix and graphite particulates (2 μm) has been proposed as a method suitable for the laser desorption/ionization mass spectrometry of peptides and proteins (Sunner, J.; et al. Anal. Chem. 1995, 67, 4335). Here we demonstrate the potential of this approach as a straightforward, and very general, method of achieving the ultraviolet(More)
Significant developments in the field of ambient desorption/ionization mass spectrometry (MS) have led to high-throughput direct analysis and imaging capabilities. However, advances in coupling ambient ionization techniques with standalone drift tube ion mobility spectrometry (DTIMS) have been comparatively slower, despite the attractive ruggedness and(More)
Molecular dynamics simulations of matrix-assisted laser desorption/ionization were carried out to investigate laser pulse width and fluence effects on primary and secondary ionization process. At the same fluence, short (35 or 350 ps) pulses lead to much higher initial pressures and ion concentrations than longer ones (3 ns), but these differences do not(More)
Ion mobility mass spectrometry (IMMS) has gained popularity in the analysis of complex mixtures such as those encountered in metabolomics and proteomics. However, the challenge that exists in conventional pulsed IMMS is its inherent low duty cycle. The first application of Hadamard transform (HT)-type signal coupled with atmospheric pressure IMMS to complex(More)
A novel modular approach to electron-deficient and electron-rich M6L4 cages is presented. From the same starting compound, via a minor modulation of the synthesis route, two C3-symmetric ligands L1 and L2 with different electronic properties are obtained in good yield. The trifluoro-triethynylbenzene-based ligand L1 is more electron-deficient than the(More)