Learn More
Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Na¨ıve Bayes classifiers(More)
Advanced analysis of data streams is quickly becoming a key area of data mining research as the number of applications demanding such processing increases. Online mining when such data streams evolve over time, that is when concepts drift or change completely, is becoming one of the core issues. When tackling non-stationary concepts, ensembles of(More)
The alternating decision tree (ADTree) is a successful classification technique that combines decision trees with the predictive accuracy of boosting into a set of interpretable classification rules. The original formulation of the tree induction algorithm restricted attention to binary classification problems. This paper empirically evaluates several(More)
We investigated the effects of kindling and kindled seizures in different limbic structures on place and cue learning in the Morris water maze. The triggering of seizures by stimulation of the perforant path, septum, or amygdala prior to daily training impaired place learning, but had little effect on visible platform training or swim speed. Seizures(More)
The alternating decision tree brings comprehensibility to the performance enhancing capabilities of boosting. A single interpretable tree is induced wherein knowledge is distributed across the nodes and multiple paths are traversed to form predictions. The complexity of the algorithm is quadratic in the number of boosting iterations and this makes it(More)