Richard K. Shields

Learn More
Maintaining the physiologic integrity of paralyzed limbs may be critical for those with spinal cord injury (SCI) to be viable candidates for a future cure. No long-term intervention has been tested to attempt to prevent the severe musculoskeletal deterioration that occurs after SCI. The purposes of this study were to determine whether a long-term(More)
The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus(More)
OBJECTIVE Knee surgery may alter the neuromuscular response to unexpected perturbations during functional, dynamic tasks. Long latency reflexes (LLR) follow a transcortical pathway and appear to be modifiable by task demands, potentially giving them a role in neuromuscular performance. We examined LLRs of the quadriceps and hamstrings in response to(More)
Neuromuscular control strategies might change with age and predispose the elderly to knee-joint injury. The purposes of this study were to determine whether long latency responses (LLRs), muscle-activation patterns, and movement accuracy differ between the young and elderly during a novel single-limb-squat (SLS) task. Ten young and 10 elderly participants(More)
Spinal cord injury is associated with adaptations to the muscular, skeletal, and spinal systems. Experimental data are lacking regarding the extent to which rehabilitative methods may influence these adaptations. An understanding of the plasticity of the muscular, skeletal, and spinal systems after paralysis may be important as new rehabilitative(More)
The purpose of this study was to assess the reliability of a novel TMS motor cortex mapping procedure. The procedure was designed to take less time and be more clinically useful by delivering fewer MEPS over fewer skull locations. Resting motor evoked potentials (MEPs) were recorded from the first dorsal interosseus muscle of 6 individuals over a fixed(More)
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric(More)
OBJECTIVE We investigated the effect of various doses of limb compressive load on soleus H-reflex amplitude and post activation depression in individuals with/without chronic SCI. We hypothesized that SCI reorganization changes the typical reflex response to an external load. METHODS Ten healthy adults and 10 individuals with SCI received three doses of(More)
OBJECTIVE The aim of this study was to examine the cortical and segmental excitability changes during fatigue of the soleus muscle. METHODS Ten healthy young subjects performed 45 plantar flexion maximal voluntary contractions (MVCs) (7-s on/3-s off) in 9 epochs of five contractions. Motor evoked potentials (MEPs) using transcranial magnetic stimulation(More)
OBJECTIVE Understanding of how female subjects learn to move accurately during a resisted weight-bearing task is limited. The purpose of this study was to examine the muscle activation patterns used by female subjects in learning a novel single-leg squat (SLS) task under visual and nonvisual conditions. DESIGN Prospective training study. SETTING(More)