Richard Jayadi Oentaryo

Learn More
Mobile advertising has recently seen dramatic growth, fueled by the global proliferation of mobile phones and devices. The task of predicting ad response is thus crucial for maximizing business revenue. However, ad response data change dynamically over time, and are subject to cold-start situations in which limited history hinders reliable prediction. There(More)
Debugging often takes much effort and resources. To help developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been proposed. IR-based techniques process textual information in bug reports, while spectrum-based techniques process program spectra (i.e., a record of which program elements are executed(More)
Cognitive architectures play a vital role in providing blueprints for building future intelligent systems supporting a broad range of capabilities similar to those of humans. How useful are existing architectures for creating artificial general intelligence? A critical survey of the state of the art in cognitive architectures is presented providing a useful(More)
The problem of recommending items to users is relevant to many applications and the problem has often been solved using methods developed from Collaborative Filtering (CF). Collaborative Filtering model-based methods such as Matrix Factorization have been shown to produce good results for static rating-type data, but have not been applied to time-stamped(More)
In service-based industries, churn poses a significant threat to the integrity of the user communities and profitability of the service providers. As such, research on churn prediction methods has been actively pursued, involving either intrinsic, user profile factors or extrinsic, social factors. However, existing approaches often address each type of(More)
We present ZoneRec—a zone recommendation system for physical businesses in an urban city, which uses both public business data from Facebook and urban planning data. The system consists of machine learning algorithms that take in a business’ metadata and outputs a list of recommended zones to establish the business in. We evaluate our system using data of(More)
Social media have been popular not only for individuals to share contents, but also for organizations to engage users and spread information. Given the trait differences between personal and organization accounts, the ability to distinguish between the two account types is important for developing better search/recommendation engines, marketing strategies,(More)
Click fraud–the deliberate clicking on advertisements with no real interest on the product or service offered–is one of the most daunting problems in online advertising. Building an effective fraud detection method is thus pivotal for online advertising businesses. We organized a Fraud Detection in Mobile Advertising (FDMA) 2012 Competition, opening the(More)