Learn More
Tachykinin-related peptides (TRP) are widely distributed in the CNS of insects, where they are likely to function as transmitters/modulators. Metabolic inactivation by membrane ecto-peptidases is one mechanism by which peptide signalling is terminated in the CNS. Using locustatachykinin-1 (LomTK-1, GPSGFYGVRamide) as a substrate and several selective(More)
The gene Dtk, encoding the prohormone of tachykinin-related peptides (TRPs), has been identified from Drosophila. This gene encodes five putative tachykinin-related peptides (DTK-1 to 5) that share the C-terminal sequence FXGXRamide (where X represents variable residues) as well as an extended peptide (DTK-6) with the C-terminus FVAVRamide). By mass(More)
Proctolin was the first insect neuropeptide to be sequenced and has been the subject of many physiological and pharmacological studies in insects and crustaceans. We have identified a Drosophila gene (CG7105, Proct) encoding a precursor protein containing the neuropeptide proctolin (RYLPT). In situ hybridization with a riboprobe to the Proct gene revealed a(More)
Peptides structurally related to mammalian tachykinins have recently been isolated from the brain and intestine of several insect species, where they are believed to function as both neuromodulators and hormones. Further evidence for the signaling role of insect tachykinin-related peptides was provided by the cloning and characterization of cDNAs for two(More)
Drosophila melanogaster angiotensin converting enzyme (Ance) and angiotensin converting enzyme related (Acer) are single domain homologs of mammalian peptidyl dipeptidase A (angiotensin I-converting enzyme) whose physiological substrates have not as yet been identified. We have investigated the in vitro substrate specificities of the two peptidases towards(More)
Ance is a single domain homologue of mammalian angiotensin-converting enzyme (ACE) and is important for normal development and reproduction in Drosophila melanogaster. Mammalian ACE is responsible for the synthesis of angiotensin II and the inactivation of bradykinin and N -acetyl-Ser-Asp-Lys-Pro, but the absence of similar peptide hormones in insects(More)
Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the(More)
  • 1