Richard J. Krauzlis

Learn More
Primates use a combination of smooth pursuit and saccadic eye movements to stabilize the retinal image of selected objects within the high-acuity region near the fovea. Pursuit has traditionally been viewed as a relatively automatic behavior, driven by visual motion signals and mediated by pathways that connect visual areas in the cerebral cortex to motor(More)
During fixation, the eyes are not still but often exhibit microsaccadic movements. The function of microsaccades is controversial, largely because the neural mechanisms responsible for their generation are unknown. Here, we show that the superior colliculus (SC), a retinotopically organized structure involved in voluntary-saccade target selection, plays a(More)
1. In three human subjects, we measured the latency of pursuit and saccadic eye movements made to an eccentric target after a fixated central target was extinguished. In one set of experiments, we varied the time interval between the extinction of the central target and the appearance of the eccentric target ("gap duration"). In a second set of experiments,(More)
Previous research has demonstrated learning in the pursuit system, but it is unclear whether these effects are the result of changes in visual or motor processing. The ability to maintain smooth pursuit during the transient disappearance of a visual target provides a way to assess pursuit properties in the absence of visual inputs. To study the long-term(More)
The initiation of both pursuit and saccades was affected by the presence of a temporal gap between the disappearance of a fixated visual target and the appearance of a second, eccentric, target. For pursuit, the gap paradigm produced a modest (20 msec) decrease in latency. For saccades, the gap paradigm produced a similar modest decrease in the latency of(More)
We report a model that reproduces many of the behavioral properties of smooth pursuit eye movements. The model is a negative-feedback system that uses three parallel visual motion pathways to drive pursuit. The three visual pathways process image motion, defined as target motion with respect to the moving eye, and provide signals related to image velocity,(More)
1. Our goal was to assess whether visual motion signals related to changes in image velocity contribute to pursuit eye movements. We recorded the smooth eye movements evoked by ramp target motion at constant speed. In two different kinds of stimuli, the onset of target motion provided either an abrupt, step change in target velocity or a smooth target(More)
Primates use two types of voluntary eye movements to track objects of interest: pursuit and saccades. Traditionally, these two eye movements have been viewed as distinct systems that are driven automatically by low-level visual inputs. However, two sets of findings argue for a new perspective on the control of voluntary eye movements. First, recent(More)
We have examined the role of the superior colliculus (SC) in choosing targets for pursuit and saccades by comparing neuronal activity at sites representing the possible choices. After recording during a two-alternative forced-choice paradigm, we measured the difference in activity of the populations representing the two choices by computing receiver(More)