Learn More
In polarized epithelial cells [Ca2+]i waves are initiated in discrete regions and propagate through the cytosol. The structural basis for these compartmentalized and coordinated events are not well understood. In the present study we used a combination of [Ca2+]i imaging at high temporal resolution, recording of Ca2+-activated Cl- current, and(More)
The type I inositol 1,4,5-trisphosphate (InsP3) receptor can be rapidly depleted from cells during stimulation of phosphoinositide hydrolysis because its degradation is accelerated (Wojcikiewicz, R. J. H., Furuichi, T., Nakade, S., Mikoshiba, K., and Nahorski, S. R. (1994) J. Biol. Chem. 269, 7963-7969). The present study examines the regulatory properties(More)
The waning of responses to cell-surface receptor activation during persistent stimulation with agonists (desensitization) is a feature common to many forms of transmembrane signalling. However, information is scarce regarding the regulatory processes that modulate the extensive group of receptors linked via phosphoinositidase C to the production of inositol(More)
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcepsilonR1) leads to activation of phospholipase C gamma isoforms via tyrosine kinase- and(More)
Intracellular Ca2+ stores in permeabilized SH-SY5Y neuroblastoma cells were mobilized by D-myo-inositol 1,4,5-trisphosphate [D-Ins(1,4,5)P3] and two of its synthetic analogues, DL-myo-inositol 1,4-bisphosphate 5-phosphorothioate (DL-InsP3-5S) and DL-myo-inositol 1,4,5-trisphosphorothioate (DL-InsP3S3). The concentrations of D-Ins(1,4,5)P3, DL-InsP3-5S, and(More)
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. While it is clear that IP(3) receptors are polyubiquitinated and are transferred to the proteasome by a p97-based complex, currently very little is known about the(More)
The ability of cAMP-dependent protein kinase (PKA) to phosphorylate type I, II, and III inositol 1,4,5-trisphosphate (InsP3) receptors was examined. The receptors either were immunopurified from cell lines and then phosphorylated with purified PKA or were phosphorylated in intact cells after activating intracellular cAMP formation. The former studies showed(More)
The effects of mastoparan on phospholipase C-catalysed phosphoinositide hydrolysis were examined in [3H]inositol-labelled human neuroblastoma SH-SY5Y cells. [3H]Inositol phosphate formation in intact cells was not altered by 20 microM mastoparan. In contrast, [3H]inositol phosphate formation in electrically permeabilized cells stimulated with guanosine(More)
To initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+](i)). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP(3)R1), the channel implicated, undergoes modifications that enhance its function. We found that IP(3)R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this(More)
Approximately one-third of newly synthesized eukaryotic proteins are targeted to the secretory pathway, which is composed of an organellar network that houses the enzymes and maintains the chemical environment required for the maturation of secreted and membrane proteins. Nevertheless, this diverse group of proteins may fail to achieve their native states(More)