Richard J. H. Wojcikiewicz

Learn More
Stimulation of SH-SY5Y human neuroblastoma cells with carbachol, a muscarinic agonist, down-regulates the type I inositol 1,4,5-trisphosphate (InsP3) receptor by > 90% with maximal and half-maximal effects after approximately 6 h and approximately 1 h, respectively. Examination of the mechanistic basis of this down-regulation revealed that carbachol(More)
In polarized epithelial cells [Ca2+]i waves are initiated in discrete regions and propagate through the cytosol. The structural basis for these compartmentalized and coordinated events are not well understood. In the present study we used a combination of [Ca2+]i imaging at high temporal resolution, recording of Ca2+-activated Cl- current, and(More)
Activation of certain phosphoinositidase-C-linked cell-surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and, thus, lead to Ins(1,4,5)P3-receptor down-regulation. In the current study we have sought to determine whether the ubiquitin/proteasome pathway is involved in this adaptive(More)
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. Although it is clear that IP(3) receptors are polyubiquitinated upon activation and are transferred to the proteasome by a p97-based complex, currently nothing is(More)
Stimulation of muscarinic receptors expressed in SH-SY5Y human neuroblastoma cells resulted in a complex profile of inositol 1,4,5-trisphosphate (InsP3) accumulation, with a dramatic increase (six- to eightfold) over the first 10 s (the "peak" phase) and subsequently from approximately 60 s onward, maintained at a lower but sustained level (the "plateau"(More)
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcepsilonR1) leads to activation of phospholipase C gamma isoforms via tyrosine kinase- and(More)
The type I inositol 1,4,5-trisphosphate (InsP3) receptor can be rapidly depleted from cells during stimulation of phosphoinositide hydrolysis because its degradation is accelerated (Wojcikiewicz, R. J. H., Furuichi, T., Nakade, S., Mikoshiba, K., and Nahorski, S. R. (1994) J. Biol. Chem. 269, 7963-7969). The present study examines the regulatory properties(More)
The waning of responses to cell-surface receptor activation during persistent stimulation with agonists (desensitization) is a feature common to many forms of transmembrane signalling. However, information is scarce regarding the regulatory processes that modulate the extensive group of receptors linked via phosphoinositidase C to the production of inositol(More)
How endoplasmic reticulum (ER) proteins that are substrates for the ER-associated degradation (ERAD) pathway are recognized for polyubiquitination and proteasomal degradation is largely unresolved. Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric calcium channels in ER membranes, whose primary role is to control the release of ER calcium(More)
The ability of cAMP-dependent protein kinase (PKA) to phosphorylate type I, II, and III inositol 1,4,5-trisphosphate (InsP3) receptors was examined. The receptors either were immunopurified from cell lines and then phosphorylated with purified PKA or were phosphorylated in intact cells after activating intracellular cAMP formation. The former studies showed(More)