Learn More
PURPOSE Poly(ADP-ribose) polymerase (PARP) inhibitors selectively target homologous recombination (HR)-defective cells and show good clinical activity in hereditary breast and ovarian cancer associated with BRCA1 or BRCA2 mutations. A high proportion (up to 50%) of sporadic epithelial ovarian cancers (EOC) could be deficient in HR due to genetic or(More)
BACKGROUND The ataxia telangiectasia mutated and Rad3-related kinase (ATR) has a key role in the signalling of stalled replication forks and DNA damage to cell cycle checkpoints and DNA repair. It has long been recognised as an important target for cancer therapy but inhibitors have proved elusive. As NU6027, originally developed as a CDK2 inhibitor,(More)
ATR is an attractive target in cancer therapy because it signals replication stress and DNA lesions for repair and to S/G2 checkpoints. Cancer-specific defects in the DNA damage response (DDR) may render cancer cells vulnerable to ATR inhibition alone. We determined the cytotoxicity of the ATR inhibitor VE-821 in isogenically matched cells with DDR(More)
The pathogenesis of epithelial ovarian cancer remains unclear. From epidemiological studies raised levels of androgens have been implicated to increase the risk of developing the disease. The purpose of this study was to determine the responses of normal human ovarian surface epithelium to androgens. We have established primary cultures of human ovarian(More)
Up to 50% of epithelial ovarian cancers (EOC) display defects in the homologous recombination (HR) pathway. We sought to determine the ramifications of the homologous recombination-deficient (HRD) status on the clinicopathologic features, chemotherapy response, and survival outcomes of patients with EOCs. HR status was determined in primary cultures from(More)
We used a functional complementation approach to identify tumor-suppressor genes and putative therapeutic targets for ovarian cancer. Microcell-mediated transfer of chromosome 18 in the ovarian cancer cell line TOV21G induced in vitro and in vivo neoplastic suppression. Gene expression microarray profiling in TOV21G(+18) hybrids identified 14 candidate(More)
PURPOSE NRH:quinone oxidoreductase 2 (NQO2) is a homologue of NAD(P)H:quinone oxidoreductase 1 (NQO1). Despite 54% homology with human NQO1, NQO2 has little endogenous enzymatic activity. However, NQO2 has potential as a therapeutic target because the addition of the nonbiogenic electron donor dihydronicotinamide riboside (NRH) selectively potentiates the(More)
The use of cell lines or animal models has significant disadvantages when dealing with a set of heterogeneous diseases such as epithelial ovarian cancer. This has clinical relevance in that biomarkers developed using cell line or animal models are often not transferable to the clinical setting. In this study, we describe the development of a robust protocol(More)
Ovulation-associated inflammation with accompanied cytokines and reproductive hormones impact upon the human ovarian surface epithelium (hOSE) and probably have a role in the aetiology of ovarian cancer. Progesterone and progestin-related events, i.e. pregnancy and oral contraception, protect from the disease. We have investigated the pre-receptor(More)
BACKGROUND Epidemiological and in vitro data implicate androgens in the aetiology of ovarian cancer, but the mechanisms by which this is mediated are unclear. In this study, we wished to examine the effects of androgens on gene expression in ovarian cancer. METHODS The expression of androgen receptor (AR) in OVCAR3 and OSEC2 cells was confirmed using(More)