Learn More
DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter(More)
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first(More)
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Hewlett-Packard Company products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new(More)
Human T-lymphotropic virus type 1 (HTLV-1) persists by driving clonal proliferation of infected T lymphocytes. A high proviral load predisposes to HTLV-1-associated diseases. Yet the reasons for the variation within and between persons in the abundance of HTLV-1-infected clones remain unknown. We devised a high-throughput protocol to map the genomic(More)
BACKGROUND Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies(More)
The structure of RNase P protein from the hyperthermophilic bacterium Thermotoga maritima was determined at 1.2-A resolution by using x-ray crystallography. This protein structure is from an ancestral-type RNase P and bears remarkable similarity to the recently determined structures of RNase P proteins from bacteria that have the distinct, Bacillus type of(More)
The X-ray crystal structures of Escherichia coli gamma-aminobutyrate aminotransferase unbound and bound to the inhibitor aminooxyacetate are reported. The enzyme crystallizes from ammonium sulfate solutions in the P3(2)21 space group with a tetramer in the asymmetric unit. Diffraction data were collected to 2.4 A resolution for the unliganded enzyme and 1.9(More)
Accelerating a genetic algorithm (GA) by implementing it in a reconfigurable field programm-able gate array (FPGA) is described. The implemented GA features: random parent selection, which conserves selection circuitry; a steady-state memory model, which conserves chip area; survival of fitter child chromosomes over their less-fit parent chromosomes, which(More)
1. Abstract Prototypes are invaluable for studying special purpose parallel architectures and custom computing. This paper describes a new FPGA, called Plasma— the heart of a configur-able custom computing engine (Teramac) that can execute synchronous logic designs up to one million gates at rates up to one megahertz. Plasma FPGA's using 0.8 micron CMOS are(More)