Learn More
Mutations in the adult human skeletal muscle Na+ channel alpha subunit cause the disease paramyotonia congenita. Two paramyotonia congenita mutations, R1448H and R1448C, substitute histidine and cysteine for arginine in the S4 segment of domain 4. These mutations, expressed in a cell line, have only small effects on the activation of Na+ currents, but(More)
Sodium channels have four homologous domains (D1-D4) each with six putative transmembrane segments (S1-S6). The highly charged S4 segments in each domain are postulated voltage sensors for gating. We made 15 charge-neutralizing or -reversing substitutions in the first or third basic residues (arginine or lysine) by replacement with histidine, glutamine, or(More)
Currents were obtained from single sodium channels in outside-out excised patches of membrane from the cell line GH3. The currents were examined in control patches and in patches treated with N- bromoacetamide ( NBA ) to remove inactivation. The single-channel current-voltage relationship was linear over the range -60 to + 10 mV, and was unaffected by NBA .(More)
The principal voltage-sensitive sodium channel from human heart has been cloned, sequenced, and functionally expressed. The cDNA, designated hH1, encodes a 2016-amino acid protein that is homologous to other members of the sodium channel multigene family and bears greater than 90% identity to the tetrodotoxin-insensitive sodium channel characteristic of rat(More)
Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated sodium channels, decreasing excitability of nerve and muscle cells. Channel inhibition by members of this family of cationic, hydrophobic drugs relies on the presence of highly conserved aromatic residues in the pore-lining S6 segment of the fourth homologous domain of the channel.(More)
Mutations in the skeletal muscle voltage-gated Na+ channel alpha-subunit have been found in patients with two distinct hereditary disorders of sarcolemmal excitation: hyperkalemic periodic paralysis (HYPP) and paramyotonia congenita (PC). Six of these mutations have been functionally expressed in a heterologous cell line (tsA201 cells) using the recombinant(More)
Single channel currents were obtained from voltage-activated sodium channels in outside-out patches of tissue-cultured GH3 cells, a clonal line from rat pituitary gland. In membrane patches where the probability of overlapping openings was low, the open time histograms were well fit by a single exponential. Most analysis was done on a patch with exactly one(More)
A pair of conserved methionine residues, located on the cytoplasmic linker between segments S4 and S5 in the fourth domain of human heart Na channels (hH1), plays a role in the kinetics and voltage dependence of inactivation. Substitution of these residues by either glutamine (M1651M1652/QQ) or alanine (MM/AA) increases the inactivation time constant (tau)(More)
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum(More)