Learn More
Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)-the primary cellular model of memory in the mammalian brain. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and(More)
Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent(More)
A novel property of hippocampal LTP, 'variable persistence', has recently been described that is, we argue, relevant to the role of LTP in information storage. Specifically, new results indicate that a particular pattern of synaptic activation can give rise, either to a relatively short-lasting LTP, or to a longer-lasting LTP as a function of the history of(More)
When new learning occurs against the background of established prior knowledge, relevant new information can be assimilated into a schema and thereby expand the knowledge base. An animal model of this important component of memory consolidation reveals that systems memory consolidation can be very fast. In experiments with rats, we found that the(More)
Experiments were conducted using hippocampal slices in vitro to compare two accounts of the mechanisms by which input-specific protein synthesis-dependent long-term potentiation (late-LTP) may be realised. The synaptic tag hypothesis (Frey and Morris, 1997) predicts that the expression of early-LTP following a weak tetanus can be stabilised into late-LTP by(More)
Many lesion experiments have provided evidence that the hippocampus plays a time-limited role in memory, consistent with the operation of a systems-level memory consolidation process during which lasting neocortical memory traces become established [see Squire, L. R., Clark, R. E., & Knowlton, B. J. (2001). Retrograde amnesia. Hippocampus 11, 50]. However,(More)
Paired-associate learning is often used to examine episodic memory in humans. Animal models include the recall of food-cache locations by scrub jays and sequential memory. Here we report a model in which rats encode, during successive sample trials, two paired associates (flavours of food and their spatial locations) and display better-than-chance recall of(More)
Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along the(More)
At excitatory synapses, the postsynaptic scaffolding protein postsynaptic density 95 (PSD-95) couples NMDA receptors (NMDARs) to the Ras GTPase-activating protein SynGAP. The close association of SynGAP and NMDARs suggests that SynGAP may have an important role in NMDAR-dependent activation of Ras signaling pathways, such as the MAP kinase pathway, and in(More)
Weakly tetanized synapses in area CA1 of the hippocampus that ordinarily display long-term potentiation lasting approximately 3 h (called early-LTP) will maintain a longer-lasting change in efficacy (late-LTP) if the weak tetanization occurs shortly before or after strong tetanization of an independent, but convergent, set of synapses in CA1. The synaptic(More)