Learn More
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties(More)
The suitability of various commercially available endothelial cell lines in studies of astrocytic/endothelial cell interactions was assessed. The endothelial-like cell line ECV304 was compared with T24/83, Eahy929, and b.End5 and rat cerebral endothelial cells in their ability, when co-cultured with rat (C6) glioma cells, to form a transendothelial(More)
The inferior colliculus receives a massive convergence of inputs and in the mustached bat, this convergence leads to the creation of neurons in the inferior colliculus that integrate information across multiple frequency bands. These neurons are tuned to multiple frequency bands or are combination-sensitive; responding best to the combination of two signals(More)
Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for(More)
This study investigates the learning dynamics of cartwheel cells in the dorsal cochlear nucleus (DCN). Cartwheel cells are excited by parallel fibers that carry information from various sources, such as auditory stimuli, proprioception and recurrent inputs from higher-order auditory processing. Thus, these cells are thought to be involved in multimodal(More)
Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are(More)
The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly(More)
The mammalian superior paraolivary nucleus (SPON) is a major source of GABAergic inhibition to neurons in the inferior colliculus (IC), a well-studied midbrain nucleus that is the site of convergence and integration for the majority ascending auditory pathways en route to the cortex. Neurons in the SPON and IC exhibit highly precise responses to temporal(More)
The superior paraolivary nucleus (SPON; alternative abbreviation: SPN for the same nucleus in certain species) is a prominent brainstem structure that provides strong inhibitory input to the auditory midbrain. Previous studies established that SPON neurons encode temporal sound features with high precision. These earlier characterizations of SPON responses(More)
Two new methods are described for the quantitative measurement of itch: the principle is to measure scratch which is the major objective correlate of itch. The first method is to record whole body movement at night by a vibration transducer on a bed leg; this gives qualitative and quantitative information. The second method is to measure limb movement with(More)