Richard F . Keep

Learn More
The past decade has resulted in a rapid increase in knowledge of mechanisms underlying brain injury induced by intracerebral haemorrhage (ICH). Animal studies have suggested roles for clot-derived factors and the initial physical trauma and mass effect as a result of haemorrhage. The coagulation cascade (especially thrombin), haemoglobin breakdown products,(More)
BACKGROUND AND PURPOSE In humans, intracerebral hemorrhage (ICH) causes marked perihematomal edema formation and neurological deficits. A rat ICH model, involving infusion of autologous blood into the caudate, has been used extensively to study mechanisms of edema formation, but an examination of behavioral outcome would improve its preclinical utility and(More)
BACKGROUND AND PURPOSE Evidence indicates that brain injury after intracerebral hemorrhage (ICH) is due in part to the release of iron from hemoglobin. Therefore, we examined whether such iron is cleared from the brain and the effects of ICH on proteins that may alter iron release or handling: brain heme oxygenase-1, transferrin, transferrin receptor, and(More)
The present study was designed to elucidate the effects of the chemokine monocyte chemoattractant protein (MCP-1) on blood-brain barrier (BBB) permeability. Experiments were conducted under in vitro conditions (coculture of brain endothelial cells and astrocytes) to study the cellular effects of MCP-1 and under in vivo conditions (intracerebral and(More)
The blood-brain barrier (BBB) is a highly specialized structural and biochemical barrier that regulates the entry of blood-borne molecules into brain, and preserves ionic homeostasis within the brain microenvironment. BBB properties are primarily determined by junctional complexes between the cerebral endothelial cells. These complexes are comprised of(More)
Intracerebral haemorrhage accounts for about 10-15% of all strokes and is associated with high mortality and morbidity. No successful phase 3 clinical trials for this disorder have been completed. In the past 6 years, the number of preclinical and clinical studies focused on intracerebral haemorrhage has risen. Important advances have been made in animal(More)
The expression of the monocyte chemoattractant protein-1 (MCP-1) receptor CCR2 by brain endothelial cells suggests that MCP-1 may have other functions than purely driving leukocyte migration into brain parenchyma during inflammation. This study examines one of these potential novel roles of MCP-1 regulation of endothelial permeability using primary cultures(More)
OBJECT The mechanisms involved in brain edema formation following intracerebral hemorrhage (ICH) have not been fully elucidated. The authors have found that red blood cell lysis plays an important role in edema development after ICH. In the present study, they sought to determine whether degradation products of hemoglobin cause brain edema. METHODS(More)
Disturbance of the tight junction (TJ) complexes between brain endothelial cells leads to increased paracellular permeability, allowing leukocyte entry into inflamed brain tissue and also contributing to edema formation. The current study dissects the mechanisms by which a chemokine, CCL2, induces TJ disassembly. It investigates the potential role of(More)
In addition to being the main source of cerebrospinal fluid (CSF) secretion, the choroid plexuses are involved in the supply and distribution of peptides to brain, the removal of toxic metabolites, the excretion of xenobiotics, and the delivery of drugs as an alternative route to the blood-brain barrier (BBB). The discovery of proton-coupled oligopeptide(More)