Learn More
One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may(More)
Strong coupling between a microwave photon and electron spins, which could enable a long-lived quantum memory element for superconducting qubits, is possible using a large ensemble of spins. This represents an inefficient use of resources unless multiple photons, or qubits, can be orthogonally stored and retrieved. Here we employ holographic techniques to(More)
A major challenge in using spins in the solid state for quantum technologies is protecting them from sources of decoherence. This is particularly important in nanodevices where the proximity of material interfaces, and their associated defects, can play a limiting role. Spin decoherence can be addressed to varying degrees by improving material purity or(More)
High-spin paramagnetic manganese defects in polar piezoelectric zinc oxide exhibit a simple, almost axial anisotropy and phase coherence times of the order of a millisecond at low temperatures. The anisotropy energy is tunable using an externally applied electric field. This can be used to control electrically the phase of spin superpositions and to drive(More)
Donors in silicon hold considerable promise for emerging quantum technologies, due to their uniquely long electron spin coherence times. Bismuth donors in silicon differ from more widely studied group V donors, such as phosphorous, in several significant respects: They have the strongest binding energy (70.98 meV), a large nuclear spin (I=9/2), and a strong(More)
We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas resonance signal increases by 2 orders of magnitude from X to W band, while the donor resonance signals are enhanced by over 1 order of magnitude.(More)
  • 1