Learn More
Recent reports have described reduced immunological responsiveness and stimulatory capacity among monocytes/microglia that infiltrate malignant human gliomas. Herein, we demonstrate that culture of ex vivo human monocytes or primary human microglia with tumor cells isolated from glioblastoma multiforme (GBM) specimens renders them tolerogenic, capable of(More)
Abnormal signaling through the platelet-derived growth factor receptor (PDGFR) has been proposed as a possible mechanism of spinal cord glioma initiation and progression. However, the extent of PDGFR expression in human spinal cord gliomas remains unknown. In this study we perform immunohistochemical analysis of PDGFRα expression in a series of 33 primary(More)
OBJECTIVES Children with sickle cell anemia (SCA) and moyamoya syndrome carry a significant risk of ischemic stroke. Given the success of encephaloduroarteriosynangiosis (EDAS) or pial synangiosis in the treatment of moyamoya disease, the purpose of this study was to examine whether it reliably and durably protected children with SCA and moyamoya syndrome(More)
Tumor-associated macrophages (TAMs) contribute substantially to the tumor mass of gliomas and have been shown to play a major role in the creation of a tumor microenvironment that promotes tumor progression. Shortcomings of attempts at antiglioma immunotherapy may result from a failure to adequately address these effects. Emerging evidence supports an(More)
Pilomyxoid astrocytoma (PMA) is a recently defined pediatric brain tumor; PMAs were previously classified within the pilocytic astrocytoma (PA) category. Nevertheless, PMA has different histological features and has been shown to behave more aggressively than PA. These findings indicate that PMA may be a unique entity that is distinct from PA, or it may be(More)
OBJECTIVE Pilomyxoid astrocytoma (PMA) is a recently identified pediatric low-grade neoplasm that was previously classified as pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. These tumors have been shown to have significantly shorter progression-free and overall survival probability than classical(More)
Convection-enhanced delivery (CED) for the treatment of malignant gliomas is a technique that can deliver chemotherapeutic agents directly into the tumor and the surrounding interstitium through sustained, low-grade positive-pressure infusion. This allows for high local concentrations of drug within the tumor while minimizing systemic levels that often lead(More)
Recent evidence suggests that suppression of the cellular immune response is often attributable to populations of functionally distinct T cells that act to down-regulate Ag-specific effector T cells. Using flow cytometry, we evaluated tumor-infiltrating lymphocytes (TIL) from patients undergoing neurosurgical resection of glioblastoma multiforme (GBM),(More)
BACKGROUND Immunosuppression by gliomas contributes to tumor progression and treatment resistance. It is not known when immunosuppression occurs during tumor development but it likely involves cross-talk among tumor cells, tumor-associated macrophages and microglia (TAMs), and peripheral as well as tumor-infiltrating lymphocytes (TILs). RESULTS We have(More)