Learn More
While a number of algorithms for multiobjective reinforcement learning have been proposed, and a small number of applications developed, there has been very little rigorous empirical evaluation of the performance and limitations of these algorithms. This paper proposes standard methods for such empirical evaluation, to act as a foundation for future(More)
Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a(More)
Multiobjective reinforcement learning algorithms extend reinforcement learning techniques to problems with multiple conflicting objectives. This paper discusses the advantages gained from applying stochastic policies to multiobjective tasks and examines a particular form of stochastic policy known as a mixture policy. Two methods are proposed for deriving(More)
Authorship Analysis aims to extract information about the authorship of documents from features within those documents. Typically, this is performed as a classification task with the aim of identifying the author of a document, given a set of documents of known authorship. Alternatively, unsupervised methods have been developed primarily as visualisation(More)
Multiple Classification Ripple Down Rules (MCRDR) is a knowledge acquisition technique that produces representations, or knowledge maps, of a human expert's knowledge of a particular domain. However, work on gaining an understanding of the knowledge acquired at a deeper meta-level or using the knowledge to derive new information is still in its infancy.(More)
It is well known that classification models produced by the Ripple Down Rules are easier to maintain and update. They are compact and can provide an explanation of their reasoning making them easy to understand for medical practitioners. This article is devoted to an empirical investigation and comparison of several ensemble methods based on Ripple Down(More)