Learn More
While a number of algorithms for multiobjective reinforcement learning have been proposed, and a small number of applications developed, there has been very little rigorous empirical evaluation of the performance and limitations of these algorithms. This paper proposes standard methods for such empirical evaluation, to act as a foundation for future(More)
Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a(More)
Authorship attribution is a growing field, moving from beginnings in linguistics to recent advances in text mining. Through this change came an increase in the capability of authorship attribution methods both in their accuracy and the ability to consider more difficult problems. Research into authorship attribution in the 19th century considered it(More)
Multiobjective reinforcement learning algorithms extend reinforcement learning techniques to problems with multiple conflicting objectives. This paper discusses the advantages gained from applying stochastic policies to multiobjective tasks and examines a particular form of stochastic policy known as a mixture policy. Two methods are proposed for deriving(More)
Most commercial Fraud Detection components of Internet banking systems use some kind of hybrid setup usually comprising a Rule-Base and an Artificial Neural Network. Such rule bases have been criticised for a lack of innovation in their approach to Knowledge Acquisition and maintenance. Furthermore, the systems are brittle; they have no way of knowing when(More)
Authorship Analysis aims to extract information about the authorship of documents from features within those documents. Typically, this is performed as a classification task with the aim of identifying the author of a document, given a set of documents of known authorship. Alternatively, unsupervised methods have been developed primarily as visualisation(More)