Richard D. W. Kelly

Learn More
It is now over a decade since the birth, in 1996, of Dolly the first animal to be produced by nuclear transfer using an adult derived somatic cell as nuclear donor. Since this time similar techniques have been successfully applied to a range of species producing live offspring and allowing the development of transgenic technologies for agricultural,(More)
BACKGROUND Mitochondrial DNA (mtDNA) encodes key proteins associated with the process of oxidative phosphorylation. Defects to mtDNA cause severe disease phenotypes that can affect offspring survival. The aim of this review is to identify how mtDNA is replicated as it transits from the fertilized oocyte into the preimplantation embryo, the fetus and(More)
HDACs (histone deacetylases) 1 and 2 are ubiquitous long-lived proteins, which are often found together in three major multiprotein co-repressor complexes: Sin3, NuRD (nucleosome remodelling and deacetylation) and CoREST (co-repressor for element-1-silencing transcription factor). Although there is a burgeoning number of non-histone proteins within the(More)
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low(More)
Histone deacetylases 1 and 2 (HDAC1/2) form the core catalytic components of corepressor complexes that modulate gene expression. In most cell types, deletion of both Hdac1 and Hdac2 is required to generate a discernible phenotype, suggesting their activity is largely redundant. We have therefore generated an ES cell line in which Hdac1 and Hdac2 can be(More)
It is now 8 years since the birth of Dolly, the first animal produced by nuclear transfer using a donor cell population established from an adult animal. During this time, the technique of nuclear transfer has been successfully applied to a range of mammalian species for the production of offspring using a plethora of donor cell types derived from both(More)
Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by(More)
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of(More)
Undifferentiated mouse embryonic stem cells (ESCs) possess low numbers of mitochondrial DNA (mtDNA), which encodes key subunits associated with the generation of ATP through oxidative phosphorylation (OXPHOS). As ESCs differentiate, mtDNA copy number is regulated by the nuclear-encoded mtDNA replication factors, which initiate a major replication event on(More)
BACKGROUND Endothelial progenitor cells (EPCs) are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in(More)