Learn More
Direct use of the hand as an input device is an attractive method for providing natural human–computer interaction (HCI). Currently, the only technology that satisfies the advanced requirements of hand-based input for HCI is glove-based sensing. This technology, however , has several drawbacks including that it hinders the ease and naturalness with which(More)
Organizational structures intrinsic to nervous systems can be more precisely analyzed and compared with other logical structures once they are expressed in mathematical languages. A standard mathematical language for expressing organizational structure is that of groups. Groups are especially well suited to organizational structures involving multiple(More)
Direct use of the hand as an input device is an attractive method for providing natural human-computer interaction (HCI). Currently, the only technology that satisfies the advanced requirements of hand-based input for HCI is glove-based sensing. This technology, however, has several drawbacks including that it hinders the ease and naturalness with which the(More)
Volumetric visual hulls have become very popular in many computer vision applications including human body pose estimation and virtualized reality. In these applications , the visual hull is used to approximate the 3D geometry of an object. Existing volumetric visual hull construction techniques, however, produce a 3-color volume data that merely serves as(More)
In our experience, mesh-cutting methods can be distinguished by how their solutions address the following major issues: definition of the cut path, primitive removal and re-meshing, number of new primitives created, when re-meshing is performed, and representation of the cutting tool. Many researches have developed schemes for interactive mesh cutting with(More)
Computer simulation of surgery and scientific experiments help in preparation, training, and assessment. These benefits can be further extended with the integration of robotics for teleoperation and assistance. We describe our efforts to build a realistic and useable simulation for astronaut training and experiment planning. Most of our development focused(More)
Most naturally occurring displacements of the head in space, due to either an external perturbation of the body or a self-generated, volitional head movement, apply both linear and angular forces to the head. The vestibular system detects linear and angular accelerations of the head separately, but the succeeding control of gaze and posture often relies(More)
The gaze control system governs distinct gaze behaviors, including visual fixation and gaze reorientations. Transitions between these gaze behaviors are frequent and smooth in healthy individuals. This study models these gaze-behavior transitions for different numbers of gaze degrees of freedom. Eye/head gaze behaviors have twice the number of degrees of(More)
Immersive virtual environments with lifelike interaction capabilities have very demanding requirements including high precision and processing speed. These issues raise many challenges for computer vision-based motion estimation algorithms. In this study, we consider the problem of hand tracking using multiple cameras and estimating its 3D global pose(More)
In virtual environments, head pose and/or eye-gaze estimation can be employed to improve the visual experience of the user by enabling adaptive level of detail during rendering. In this study, we present a real-time system for rendering complex scenes in an immersive virtual environment based on head pose estimation and perceptual level of detail. In our(More)