Learn More
The nucleus of the solitary tract (NST), located in the dorsomedial medulla, is the site of visceral sensory modulation of a variety of homeostatic reflexes. Given recent advancements in the understanding of active regulation of synaptic information flow by astrocytes, we sought to determine whether afferent sensory inputs to NST neurons also activates NST(More)
1. Previous anatomical studies indicate that the nucleus of the solitary tract, pars centralis (NSTc) contains the neurones which receive vagal afferent input from the oesophagus. The purpose of the present study was to characterize the NSTc circuits in the medulla that may be responsible for oesophageal control of gastric motility. 2. Moderate balloon(More)
Current treatments for acute spinal cord injury are based on animal models of human spinal cord injury (SCI). These models have shown that the initial traumatic injury to cord tissue is followed by a long period of secondary injury that includes a number of cellular and biochemical cascades. These secondary injury processes are potential targets for(More)
Excitotoxic cell death due to glutamate release is important in the secondary injury following CNS trauma or ischemia. Proinflammatory cytokines also play a role. Both glutamate and tumor necrosis factor-alpha (TNF(alpha)) are released immediately after spinal cord injury. Neurophysiological studies show that TNF(alpha) can potentiate the effects of(More)
The afferent projections to the dorsal motor nucleus of the vagus (DMN) were investigated by iontophoretically infusing horseradish peroxidase (HRP) into that neural region of the rat. After the tetramethylbenzidine histochemical procedure was performed on the HRP-injected brains, projections to the DMN from several areas were observed including the nucleus(More)
The hepatic branch of the vagus nerve has been implicated as an important source of afferent input controlling both physiological and behavioral homeostasis. In addition, it is clear that parasympathetic efferents to the liver can significantly alter hepatic functions. In order to begin physiological studies on the nature of hepatic afferent and efferent(More)
Our previous anatomical and electrophysiological studies demonstrated that first-order hepatic and gustatory afferents project to separate regions of the solitary nucleus (NST) and no intra-NST interaction of these two sensory systems could be demonstrated. However, iontophoretic injections of horseradish peroxidase into physiologically identified zones of(More)
The possible role of astrocytes in the regulation of feeding has been overlooked. It is well-established that the endothelial cells constituting the blood-brain barrier transport leptin from blood to brain and that hypothalamic neurons respond to leptin to induce anorexic signaling. However, few studies have addressed the role of astrocytes in either leptin(More)
Specific peptide YY (PYY) binding sites have recently been identified autoradiographically in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus regions [collectively referred to as the dorsal vagal complex (DVC)] in rats. These medullary brain stem regions are responsible for vagovagal reflex control of gastric function, including(More)