Learn More
Incorporation of GluR1-containing AMPA receptors into synapses is essential to several forms of neural plasticity, including long-term potentiation (LTP). Numerous signaling pathways that trigger this process have been identified, but the direct modifications of GluR1 that control its incorporation into synapses are unclear. Here, we show that(More)
Spine function requires precise control of the actin cytoskeleton. Kalirin-7, a GDP/GTP exchange factor for Rac1, interacts with PDZ proteins such as PSD-95, colocalizing with PSD-95 at synapses of cultured hippocampal neurons. PSD-95 and Kalirin-7 interact in vivo and in heterologous expression systems. In primary cortical neurons, transfected Kalirin-7 is(More)
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular(More)
Long-term potentiation (LTP), a well-characterized form of synaptic plasticity, has long been postulated as a cellular correlate of learning and memory. Although LTP can persist for long periods of time, the mechanisms underlying LTP maintenance, in the midst of ongoing protein turnover and synaptic activity, remain elusive. Sustained activation of the(More)
The actin cytoskeleton, essential for neuronal development, is regulated in part by small GTP binding proteins of the Rho subfamily. Kalirin-9, with two Rho subfamily-specific GDP/GTP exchange factor (GEF) domains, localizes to neurites and growth cones of primary cortical neurons. Kalirin-9 overexpression in cultured cortical neurons induces longer(More)
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this(More)
Although the integral membrane proteins that catalyze steps in the biosynthesis of neuroendocrine peptides are known to contain routing information in their cytosolic domains, the proteins recognizing this routing information are not known. Using the yeast two-hybrid system, we previously identified P-CIP10 as a protein interacting with the cytosolic(More)
Kalirin is a multifunctional protein identified by its interaction with peptidylglycine alpha-amidating monooxygenase, an enzyme essential for neuropeptide biosynthesis. Several forms of Kalirin exist, all containing spectrin-like repeats, a Dbl homology (DH) domain, and an adjacent pleckstrin homology (PH) domain; several different COOH-termini provide(More)
The function, trafficking and synaptic signalling of AMPA receptors are tightly regulated by phosphorylation. CaMKII phosphorylates the GluA1 AMPA subunit at Ser831 to increase single channel conductance. We show for the first time that CaMKII increases the conductance of native heteromeric AMPA receptors in mouse hippocampal neurons via phosphorylation of(More)
KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with(More)