Learn More
The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-D-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch-clamp recordings of hippocampal pyramidal neurons,(More)
A subset of glutamate receptors that are specifically sensitive to the glutamate analog N-methyl-D-aspartate (NMDA) are molecular coincidence detectors, necessary for activity-dependent processes of neurodevelopment and in sensory and cognitive functions. The activity of these receptors is modulated by the endogenous amino acid D-serine, but the extent to(More)
A very important element controlling serotonin (5-HT) release throughout the brain is the 5-HT1A autoreceptor present on the soma and dendrites of 5-HT neurons since it exerts a negative feedback influence on their firing activity. This 5-HT1A autoreceptor receives an increased activation by endogenous 5-HT at the beginning of a treatment with a selective(More)
N-methyl-d-aspartate receptor (NMDAR) activation requires both the binding of glutamate to its recognition site and occupancy of the strychnine insensitive glycine modulatory site (GMS). Pharmacological studies suggest that the glycine transporter, GlyT1, maintains subsaturating concentrations of glycine at synaptic NMDARs. To characterize further the role(More)
OBJECTIVE Various classes of antidepressant medications generally induce remission of major depressive disorder in only about one-third of patients. In a previous study using mirtazapine or paroxetine alone or in combination from treatment initiation, the rate of patients who remitted within a 6-week period was twice that of patients using either drug(More)
It has been reported that the 5-HT1A autoreceptor antagonist pindolol can accelerate the antidepressant response to the selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine, presumably by preventing the initial decrease in firing activity of 5-HT neurons produced by the SSRI. The present study was aimed at further exploring this treatment(More)
The amygdala is involved in the associative processes for both appetitive and aversive emotions, and its function is modulated by stress hormones. The neuropeptide corticotrophin releasing factor (CRF) is released during stress and has been linked to many stress-related behavioral, autonomic, and endocrine responses. In the present study,(More)
The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat(More)
Although Akt is a determinant of cisplatin (cis-diaminedichloroplatinum (CDDP)) resistance in ovarian cancer cells, which is related in part to its inhibitory action on p53 activation, precisely how Akt confers CDDP resistance is unclear. In this study, we show that CDDP induced p53-dependent Fas-associated death domain-like interleukin-1beta-converting(More)
Understanding the mechanism of cisplatin (CDDP) action may improve therapeutic strategy for ovarian cancer. Although p53 and FLICE-like inhibitory protein (FLIP) are determinants of CDDP sensitivity in ovarian cancer, the interaction between p53 and FLIP remains poorly understood. Here, using two chemosensitive ovarian cancer cell lines and various(More)