Richard B Ross

Learn More
We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically(More)
An extension of the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field to acrylate and methacrylate monomers is presented. New parameters were fit to the liquid density, normal boiling point, saturated vapor pressure, and (where experimentally available) critical constants of 1,3-butadiene, isoprene, methyl acrylate, and methyl(More)
The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on the adsorption of perfluorohexane in the activated carbon BAM-109. Entrants were challenged to predict(More)
The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were(More)
Configurational-bias Monte Carlo simulations in the isothermal-isobaric and Gibbs ensembles using the transferable potentials for phase equilibria (TraPPE) force field were carried out to compute the liquid densities, the Hildebrand solubility parameters, and the heats of vaporization for a set of 32 organic molecules with different functional groups at a(More)
  • 1