Richard B. Reilly

Learn More
A method for the automatic processing of the electrocardiogram (ECG) for the classification of heartbeats is presented. The method allocates manually detected heartbeats to one of the five beat classes recommended by ANSI/AAMI EC57:1998 standard, i.e., normal beat, ventricular ectopic beat (VEB), supraventricular ectopic beat (SVEB), fusion of a normal and(More)
Human electrophysiological (EEG) studies have demonstrated the involvement of alpha band (8- to 14-Hz) oscillations in the anticipatory biasing of attention. In the context of visual spatial attention within bilateral stimulus arrays, alpha has exhibited greater amplitude over parietooccipital cortex contralateral to the hemifield required to be ignored,(More)
An adaptive system for the automatic processing of the electrocardiogram (ECG) for the classification of heartbeats into one of the five beat classes recommended by ANSI/AAMI EC57:1998 standard is presented. The heartbeat classification system processes an incoming recording with a global-classifier to produce the first set of beat annotations. An expert(More)
Electroencephalogram (EEG) data are typically contaminated with artifacts (e.g., by eye movements). The effect of artifacts can be attenuated by deleting data with amplitudes over a certain value, for example. Independent component analysis (ICA) separates EEG data into neural activity and artifact; once identified, artifactual components can be deleted(More)
The development of a system for automatically sorting a database of shoeprint images based on the outsole pattern in response to a reference shoeprint image is presented. The database images are sorted so that those from the same pattern group as the reference shoeprint are likely to be at the start of the list. A database of 476 complete shoeprint images(More)
This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP) generated in response to phasereversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in(More)
This paper presents a novel brain computer interface (BCI) design employing visual evoked potential (VEP) modulations in a paradigm involving no dependency on peripheral muscles or nerves. The system utilizes electrophysiological correlates of visual spatial attention mechanisms, the self-regulation of which is naturally developed through continuous(More)
Faster and less obtrusive means for measuring a Visual Evoked Potential would be valuable in clinical testing and basic neuroscience research. This study presents a method for accomplishing this by smoothly modulating the luminance of a visual stimulus using a stochastic process. Despite its visually unobtrusive nature, the rich statistical structure of the(More)
A method for the automatic processing of the electrocardiogram (ECG) for the detection of obstructive apnoea is presented. The method screens nighttime single-lead ECG recordings for the presence of major sleep apnoea and provides a minute-by-minute analysis of disordered breathing. A large independently validated database of 70 ECG recordings acquired from(More)
Sustaining attention under conditions of low external demand taxes our ability to stay on task and to avoid more appealing trains of thought or environmental distractions. By contrast, a stimulating, novel environment engages attention far more freely without the subjective feeling of having to override monotony. Our ability to maintain a goal-directed(More)