Learn More
The spatial relation between mitochondria and endoplasmic reticulum (ER) in living HeLa cells was analyzed at high resolution in three dimensions with two differently colored, specifically targeted green fluorescent proteins. Numerous close contacts were observed between these organelles, and mitochondria in situ formed a largely interconnected, dynamic(More)
Eukaryotic cilia are assembled via intraflagellar transport (IFT) in which large protein particles are motored along ciliary microtubules. The IFT particles are composed of at least 17 polypeptides that are thought to contain binding sites for various cargos that need to be transported from their site of synthesis in the cell body to the site of assembly in(More)
BACKGROUND Messenger RNA (mRNA) is transcribed and processed in the nucleus of eucaryotic cells and then exported to the cytoplasm through nuclear pores. It is not known whether the movement of mRNA from its site of synthesis to the nuclear pore is directed or random. Directed movement would suggest that there is an energy-requiring step in addition to the(More)
1. Local changes in cytosolic [Ca2+] were imaged with a wide-field, high-speed, digital imaging system while membrane currents were simultaneously recorded using whole-cell, perforated patch recording in freshly dissociated guinea-pig tracheal myocytes. 2. Depending on membrane potential, Ca2+ sparks triggered 'spontaneous' transient inward currents(More)
Ca(2+) sparks are small, localized cytosolic Ca(2+) transients due to Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the(More)
The concentration of intracellular free calcium ([Ca2+]i) in polarized eosinophils was imaged during chemotaxis by monitoring fluorescence of the calcium-sensitive dye Fura-2 with a modified digital imaging microscope. Chemotactic stimuli caused [Ca2+]i to increase in a nonuniform manner that was related to cell activity. In cells moving persistently in one(More)
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+)(More)
Clathrin assembly at the plasma membrane is a fundamental process required for endocytosis. In cultured cells, most of the clathrin is localized to large patches that display little lateral mobility. The functional role of these regions is not clear, and it has been thought that they may represent artifacts of cell adhesion of cultured cells. Here we have(More)
1. A digital imaging microscope with fura-2 as the Ca2+ indicator was used to determine the sources for the rise in intracellular calcium concentration ([Ca2+]i) that occurs when the membrane in a cell-attached patch is stretched. Unitary ionic currents from stretch-activated channels and [Ca2+]i images were recorded simultaneously. 2. When suction was(More)
Although the physiological relevance of mitochondrial Ca2+ homeostasis is widely accepted, no information is yet available on the molecular identity of the proteins involved in this process. Here we analyzed the role of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane in the transmission of Ca2+ signals between the ER and(More)